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1. Introduction

The Gronwall-type integral inequalities provide necessary tools in the study of the theory
of differential equations, integral equations, and inequalities of various types. Some such
inequalities can be found in the works of Agarwal, Deng et al. [1]. The result has been used
in the study of global existence of solutions of a retarded differential equations and esti-
mation of solution of function differential equation, Cheung [2]. The result has been used
in the study of certain initial boundary value problem for hyperbolic partial differential
equations, Cheung and Ma [3]. The result has been used in the study of global existence
of solutions for a partial differential equations, Pachpatte [4-9]. The results have been ap-
plied in the study of certain properties of solutions for the integrodifferential equations,
partial integrodifferential equations, retarded Volterra-Fredholm integral equations, re-
tarded nonself-adjoint hyperbolic partial differential equations, Ye et al. [10]. The result
has been used in the study of the Riemann-Liouville fractional integral equations, Zhao
and Meng [11]. The result has been used in the study of integral equations. During the
past few years, several authors (see [12—-19] and some of the references cited therein) have
established many other very useful Gronwall—Tlike integral inequalities. Recently, in [16]
a new interesting Gronwall—like integral inequality involving iterated integrals has been
established.
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TaEoREM 1.1. Let u(t) be nonnegative continuous function in | = [a, 8] and let a(t) be
positive nondecreasing continuous function in J, and let fi(t,s), i = 1,...,n, be nonnegative
continuous functions for o < s < t < f3 which are nondecreasing in t for fixed s € J. If

tn-1

t 4
u(t) < a(t)+J fl(t,tl)( ftit) - - < fn(tnl,t,,)up(tn)dtn> . -)dn (1.1)
fort €], where p =0, p #1, is a constant. Then u(t) < Y,(t,t), where Y,(T,t) can be suc-
cessively determined from the formulas

n—1
Y (T,t) = eXp( th,»(T,s)ck)

%=1

ve  (12)

sn—1
X |:aq(T)+thfn(T,s)eXp ( —qJ Zf,‘(T,T)dT)dS]
o o

fort € [a,B,), withq=1— p and f3, is chosen so that the expression between [- - - | is posi-
tive in the subinterval [a, 3, ), and
t
_ Yk+1 (T) S)
Yi(T,t) = Ex(T,1) [a(T) +Jafk(T’S)7Ek(T,S) dS],
(1.3)

t k-1
Ex(T,t) = exp (J [Zfi(T,T) —fk(T>T)}dT>>
“Li=1

fork=n—-1,...,L,a<t<T<p.

The main aim of the present paper is to establish some nonlinear retarded inequalities,
which extend the above theorem and other results appeared in [16]. We will also illustrate
the usefulness of our results.

2. Gronwall-type inequalities

First we introduce some notation, R denotes the set of real numbers and R, = [0, 0),
J = [a, 8] is the given subset of R. Denote by C'(M, N) the class of all i-times continuously
differentiable functions defined on the set M to the set N fori = 1,2,..., and C°(M,N) =
C(M,N).

THEOREM 2.1. Let u(t) and a(t) be nonnegative continuous functions in J = [a, ] with
a(t) nondecreasing in J, and let fi(t,s), i = 1,...,n, be nonnegative continuous functions
for a < s <t < B which are nondecreasing in t for fixed s € J. Suppose that ¢ € C'(],]) is
nondecreasing with ¢(t) < t on J, g(u) is a nondecreasing continuous function for u € Ry
with g(u) >0 for u >0, and ¢ € C(R4,R,) is an increasing function with ¢(co) = oo. If

$(t) B(t1) (tn-1)
p(u(t) < “(t)+L(a) fl(t:t1)< s fltit)--- (L(a) fn(tn—lstn)g(u(tn))dtn>' . ) dt,
(2.1)
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fort € [a,f], then fort € [a, T'],

u(t) < ¢! [G—l (G(a(t)) + i J¢(t)ﬁ(t,s)ds>], (2.2)
i—1 7 ¢(@)
where
G(r)zjr ds r>ry>0 (2.3)
nst+g(s) 0% ’

G~ ! denotes the inverse function of G, and T\ €] is chosen so that (G(a(t))+>. 7 1f¢ a)f (t,
s)ds) € Dom(G™1).

Proof. Let us first assume that a(¢) > 0. Fix T € (a, 8]. For a < t < T, we obtain from (2.1)

$(t) (t1) d(tn-1)
@(u(t)) <a(T)+ o )ﬁ(Tm)( s fz(T,fz)"'<L)() fn(T,tn)g(u(tn))dtn>---)dtl.
(2.4)
Now we introduce the functions
o(t1) d(tn-1)
(1) = j (T,1) ((p()ﬁ(m)---([() fn<T,tn>g<u<tﬂ>)dtn>---)dtl,

é(t) (k)
my(t) = mk*l(t)"'Ls( )ﬁc(T>tk)< s S (T tegn) - - -

P(tu-1)
) (Ls( ) f”(T’t")g(mk—l(tn))dtn) . -)dtk,
(2.5)
for t € [a,T] and k = 2,...,n. Then we have my(«) = a(T) for k = 1,...,n, and m (¢) <
my(t) < -+ <my(t), t € [a, T]. From the inequality (2.4), we obtain u(t) < ¢~' (m; (1))

or u(t) < ¢~ Y(my,(1)), t € [a, T]. Moreover the function m;(t) is nondecreasing. Differ-
entiating m, (), we get

$(o(8)) $(tn1)
it = o) [0 e ([0 At - Jau g0,

¢(a)

<[ = fA(T,9()¢" (Oymi(t) + i(T,¢(1)) ¢ ()ma(t)].
(2.6)

Thus, induction with respect to k gives

k—1
m(t) < (Zﬁ(T,gb(t) — fi(T, (¢ )>¢> (Omi(t) + fi(T, ()¢ ()mpsa (1), (2.7)
i=1
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fort € [a,T], k=1,2,...,n— 1. From the definition of the function m,(t) and inequality
(2.7), we have

/
n

() + fu(T> () g (mu1 ($(1)) (1)

IA

IA

[( fi(T,¢(1) )m 1)+ furr (T, 0()) mu(t) + fu (T, (1)) g (mu( t))]¢ (t)
[(Z fi(T, (1) )m () + fu(T, (1)) g (1 t))]¢()

Z F(T,9(0) ¢ (1) (ma(t) + g (ma(8))).
) (2.8)

That is,

n

A Z F(T, ()¢ (8). (2.9)

mu(t) + g (my(t

Taking t = sin (2.9) and then integrating it from « to any ¢ € [a, 3], changing the variable
and using the definition of the function G, we find

nooed(t)
G(mu(t) < Gma(a) + > L( Tds (2.10)
=1~ Pl
or
nooe(t)
my(t) < G! (G(mn((x)) £ J ﬁ-(T,s)ds) (2.11)
i=1 ¢(a)

for a <t < T < f. Now, a combination of u(t) < ¢~!(m,()) and the last inequality gives
the required inequality in (2.2) for T = t. If a(t) = 0, we replace a(t) by some ¢ >0 and
subsequently let e—0. This completes the proof. O

For the special case g(u) = u? (p >0 is a constant), Theorem 2.1 gives the following
retarded integral inequality for iterated integrals.

CoroLLARY 2.2. Let u(t), a(t), fi(t,s), ¢(t), and ¢(u) be as in Theorem 2.1. And let p >0
be a constant. Suppose that

d(tn-1)

(u(t)) <a(t)+ W)f(tt)( Wl)f(t t)"'U
plu a 166 " 2(t,

$(a)

fn(tnl,tn)up(tn)dtn> . -)dtl
(2.12)

forany t € [a,f]. Then, for any t € [a, T1],

noore(t)
u(t) <! [G11 (Gl (a(t)) + Z Jvﬁ( )f,-(t,s)ds)], (2.13)
=179«
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where

Gon=[ =

, r=r1ry>0, 2.14
ro S+ P 0 ( )

Gy! denotes the inverse function of Gy, and Ty €] is chosen so that (G (a(t))+> 1, f¢ f(t
s)ds) € Dom (GY).

Remark 2.3. (i) When ¢(u) = uand g(u) = u, form Theorem 2.1, we derive the following
retarded integral inequality:

n (t)
u(t) < a(t) exp (22 Li | f,-(t,s)ds). (2.15)
i=1 o

(ii) When ¢(u) = u, in Theorem 2.1, we obtain the following retarded integral in-
equality:

noor(t)
u(t) <G (G(a(t)) +y J ﬁ(t,s)ds). (2.16)
i=1 /9@

(iii) When ¢(u) = u? (p >0 is a constant) in Theorem 2.1, we have the following
retarded integral inequality:

ne) 1%
ut) < [G-l(G(a(t)) +ZJ f,-(t,s)dsﬂ . (2.17)
i=1 /9@

Now we introduce the following notation. For a < 3, let J; = {(t1,t2,...,t;) € Ri:a <
ti<--- <t <fifori=1,..,n

TaEOREM 2.4. Let u(t) and a(t) be nonnegative continuous functions in | = [a, ] with a(t)
nondecreasing in J, and let p;(t), i = 1,...,n, be nonnegative continuous functions for o <
t < f. Suppose that ¢ € C*(J,]) is nondecreasing with ¢(t) < t on ], g(u) is a nondecreasing
contmuousfunctlon for u e Ry withg(u) >0 foru >0, and ¢ € C(Ry,R,) is an increasing
function with g(o0) = co. If

$(1)
‘P(U(t))ﬁa(t)*‘J o pi(t)g(u(t))dy
+ZJ pi(ty ( ! Pz(b)( <JZZ;Z)Pi1(ti1)
X(LZ(:;l)pi(ti)g(u(ti))dti) dti_1>- : ->dt2) dt,

(2.18)
foranyt €], then

u(t) <9 ' [G 1 (Gla(t)) + F(1))] (2.19)
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fort € [a, T,), where T, € I is chosen so that (G(a(t)) + F(t)) € Dom (G™}),

r ds
G(r) = L} g7(¢*1(s))’ r>ry>0,

Udenotes the inverse function of G, and

B(t) noocd(t) é(t1) ¢(ti-2)
F(t)= f)dt + t ) i—1(fi-
(t) L)(a)Pl( 1)dt %L(a)pl( 1)( o(@) Pz( z)( <L>(oc) p W(tio1)

o(tio1)
X (J pi(ti)dti) dtu) . ) dt2> dty,
$(a)

(2.21)

(2.20)

foranyt eI
Proof. Let the function a(t) be positive. Define a function v(t) by the right side of (2.18).

Clearly, v(t) is nondecreasing continuous, u(t) < ¢!

(v(¢)) for t € I and v(a) = a(«).
Differentiating v(t) and rewriting, we have

é%%%i%%%—ghd¢u»)svmﬂ, (222)

where

(1)
wm=L@mmmwm»m

B(t B(t2) d(ti-2)
Do) SIS G | O
¢(ti-1)
([ ptgtatian)a)---Jav)ar.

(2.23)
Now differentiating v; (t) and rewriting, we get
S Op(em) 811 =0, (2.24)

where

é(1)
n0= ] psle)gu(e)ds

+z J‘W p3(ts ( )P4(t4) ( (J’:((t”)Pil(til)

@)

><<J:(Zl)p (t)g (u(t ))dt)dt, 1) )dt4>dt3.

(2.25)
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Continuing in this way, we obtain

()

& (O pnit (6(5)) —g(u(g(®)) < vur (1),

where

é(1)
Vo1 (£) = o) Pn(tn)g(u(tn))dtw

From the definition of v,_; (¢) and the inequality u(t) < ¢~!(v(t)), we find

Vo1 (t)
gle~t(v(1)))

Integrating the inequality (2.28), we get

Lt Vi— 1(5 J puls)ds

Now integrating by parts the left—hand side of (2.29), we obtain

< ¢ ()palp(r)).

v  vaa(D) ‘vaag (7'(v) v
Lg@*ww»*‘gWAwm»+L 20 ¢le )™
Vn—l(t)

- gle~1(v(1))

From the inequalities (2.29) and (2.30), we have

V-1(1)

o(1) .
gl (v()) = L(a)pn(s) :

Next from the inequality (2.26), we observe that

Vo (8) < @' () pui1 (¢(1)) g (u(p(£))) + ¢ (£) pu1 (§(£)) Vi1 (8),

Thus, it follows that

v, (1) g(u(¢(r)) Vo1 (1)
gle~1(v(1))
anl(t)

= ¢ (0Pt ($0) +9' (0P ($00) e sy

Using the same procedure from (2.29) to (2.31) to the inequality (2.33), we get

V(1) anl(tl)

ST P00 [ a0

< ¢ (1) pu (¢(t))m +¢' (1) pn (Wﬂ)w

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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Now combining the inequalities (2.31) and (2.34), we find

V(D) J«s(r) ny JM : )J(p(m ey 039)
— e < a1 (t1)dt + a1 (t 2 (1) dtdt. 2.35
2o (D)) = o Pt AT J gy P ti) |y PR
Proceeding in this way we arrive at
vi(1) J’
— t dt
g( 1(1/ t) p2 1 1
o(t1) (tn-2)
J P2t (J ps(t )("'L() Pn(tnl)dtnl"'>dt2>dtl-

(2.36)

On the other hand, from the inequality (2.22), we have

vi(t) —a'(t) <¢"()p1(¢(1)g (u(g(1)) +¢" () pr (1)1 (1), (2.37)

or
V() —a'(t) g(u(e(t)) , vi(t)
sl 1)) =P OO0y PO LE
< ’ ’ Vl(t) ’
= ¢ (P (6(0) +¢ Opu(e(0) B
that is,
V(1) a'(t) - p vi(t)
glp 00)) ~ gly(ato)) = F OPHPONT ORI 15, Gy 23

Setting t = #; and integrating from « to t, and using the definition of G, we obtain

o1 0 n(t)

GUv(0) = Gla) + | priman+ | pi(e)  Biian. @40
Consequently, using (2.36) to the inequality (2.40), we get

v(t) < G G(a(t)) +E(t)], (2.41)

where the function F(¢) is defined in (2.21). Now, the desired inequality in (2.24) fol-
lows by the inequality u(f) < ¢~ (v(¢)). If a(t) = 0, we replace a(t) by some ¢ >0 and
subsequently let e—0. This completes the proof. O
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For the special case ¢(u) = uP (p > 1 is a constant), Theorem 2.4 gives the following
retarded integral inequality for iterated integrals.

CoroLLARY 2.5. Let u(t), a(t), pi(t), ¢(t), and g(u) be as in Theorem 2.4. And let p >0 be
a constant. If

B(t)
ub(t) < a(t) +J pi(t)g(u(t))dh
$(a)
noed(t) B(t) P(ti2)
+ ZZ s P10 ( o P2 () ( : -(LM) pi-1(ti1)
e dt;) d dt,) d
X(L(u) pi(ti)g(u(t;)) fi) fil)' . ) fz) t1,
(2.42)
forany t €], then
u(t) < [G1(G(a(®) +F(1)]"” (2.43)
for t € [a, T3], where Ts € I is chosen so that (Gy(a(t)) + F(t)) € Dom (G;'),
r ds
Gi(r) = Lﬂ m, r=ry>0, (2.44)

G~! denotes the inverse function of G, and the function F(t) is defined in (2.21) forany t € I.

THEOREM 2.6. Let u(t) and a(t) be nonnegative continuous functions in J = [a, ] with a(t)
nondecreasing in ], and let f;(t) and pi(t), i = 1,...,n, be nonnegative continuous functions
for a < t < . Suppose that ¢ € C'(],]) is nondecreasing with ¢(t) <t on J, g(u) is a non-
decreasing continuous function for u € Ry with g(u) >0 for u >0, and ¢ € C(R,R,) is an
increasing function with ¢(co) = oco. If

¢(1)

p(ut) =al0)+ | pr(0)fi(0)ule)g(ulrn))d

noorgt) ¢(tr) é(ti-2)
t L)l i—1 (L
+ZJ )Pl(l)( ¢(a)P2(2)< (J( p 1 (1)

i=2 V9l ¢la)

x(j:t;”p,-u,-)ﬁ(t,->u<ti)g<u<t,-)>dti)dt,-1). . -)dt2> i,
(2.45)

forany t € ], then

u(t) < 9" HO G (Go[@(a(1) ] + Fi(1)) ]} (2.46)
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for t € [a,Ty), where Ty € I is chosen so that (G,[®(a(t))] + Fi(t)) € Dom (G;1),
(G5 (G2 [®(a(t)] +Fi(1))] € Dom (O '),

4 ds
0|, @y 2 -
O(r) = Jr _Cis(s), r>ry>0,

G, ! denotes the inverse function of G, and

o(1)
Fi(t) = LM) pu(8) fi(Hdn

(1) é(t) é(ti2)
+ZJ pi(n) (J @ p2(t2) X(' : '(L(“) pi1(ti-1)
B(ti1)
X (J Pi(ti)fi(ti)dti) dtH)- : ) dt2> dt,
¢(a)
(2.48)

foranyt el

Proof. Let the function a(t) be positive. Define a function w(¢) by the right side of (2.45).
Clearly, w(t) is a nondecreasing continuous function, u(t) < ¢~ '(w(t)) for t € I and
w(a) = a(a). Differentiating w(t) and rewriting, we have

M y 0
o (O (6(0) — fi(@(6)u(¢p(t)g(u(d(t)) < wi(t), (2.49)

where

é(1)
()= [ pale) ple)ult)glen)dn

n

$(1) ¢(t2) ¢(ti-2)
+ t t) |- i (i
;Lw““%¢m““% Q@)pm )

1

x (Li:l)p,-(ti)f,-(t,»)u(t,-)g(u(t,-))dti> dti_1>- : -)dt3> it
(2.50)

Now differentiating v, (f) and rewriting, we get

wi(t)

T (@) ~ LOEOuPOIM0) = wa(®) (2.51)
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where
(1)
w(o)= | pa(6) s ules)g uts) o
+Z J‘W pa t3 < t3>P4(t4)< (JW[ 2)p, (t, 1)

$(a)

X(Jd)(t”)pi(ti) ﬁ(ti)u(ti)g(u(ti))dti> dti_1>- - ) dt4) dts

$(a)
(2.52)
Continuing in this way, we obtain
Wn 2( <
O )~ GO WGO) Swa 0, @5)
where
B(t)
W (1) = j () fo (1) () g (u(£2) ) . (2.54)
¢(a)
From the definition of w,,_; (¢) and the inequality u(t) < ¢! (w(¢)), we get
1O (1), (6(0) £ (9(0)g 0 (w($(0). (2.55)
1 (w(t))
Integrating the inequality (2.55), we have
! Why— 1(5) 1
L o j 2u() fuls)g (9 (w(s)) ) ds. (2.56)
Next integrating by parts the left—hand side of (2.56), we obtain
! W;;—l(s) _ Wn—l(t) ‘ Wn—1 w’ > Wn—l(t)
), (5 = o (wl0) ) AR R Al G
From the inequalities (2.56) and (2.57), we get
anl(t) < 90 -1
o w®) = o Pn(s) fu(s)g (@~ (w(s)))ds. (2.58)
Now from the inequality (2.53), we observe that
Wy () < @' () pu1(P(t)) w1 (2)
(2.59)

+¢" (1) pu1(¢(1)) fu1 (¢(1)) @~ (w(1)) g (9" (w(2))).
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Also, from the inequality (2.59), we have

72(t) Wn— l(t)
Ly =@ 0P (@0) 500 (2.60)

+¢" () pn-1(d(1)) fu1(¢(1) g (9" (w(2))).

Using the same procedure from (2.56) to (2.58) to the inequality (2.60), we find

$()
Wn72(t) < J pn—l(t ) anl(tl) dtl
) Jow

Z 1)
¢~ (w(1) ) ¢~ (w(n)) (2.61)
(a)pn_1(tl)f,,_l(tl)g((p’l(w(tl)))dtl.
Next using (2.58) in the inequality (2.61), we get
¢(t1)
s j P [ pu(9 595 (wio) sl
(2.62)
" st s (g vl s
¢(a)
Proceeding in this way, we arrive at
(1)
s = [ pa(e) fln)gle Gnta))
10 ¢ty 2) B (2.63)
[ [ At e Jan,

On the other hand, from the inequality (2.49), we have

w'(t) —a'(t) < ¢' () p1(p(1) fi(d() @~ (w(t)g (@~  (w(t)) + ¢ (£) p1 (p(£)) wr(t),

(2.64)
or
w'(t) —a'(t) wi () o
o1 (w(D)) <¢’ t)p1(¢(t)) Tw(D)) +¢" (p1(o(1) fi(d(1))g (9~ (w(t))).
(2.65)
Now, theleft-hand side of the inequality (2.65) implies that
w'(t) a'(t) w'(t)—a'(t) (2.66)

oI w(®)  ¢1at) = o l(w(®)
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In the inequalities (2.65) and (2.66), setting t = t;, integrating from « to t, and using the
definition of ®, we obtain

- o0 wi (t1)
O0) =00+ | () S iy 067
¢(0) ’
[0 pn) i)ty (we)dn
¢(a)
Consequently, from the inequalities (2.63) and (2.67), we get
w(t) < @' [k(1)], (2.68)

where the function k(¢) is defined by

(1)
k) = O(a(T) + || pi(6) filt)glo ™ (w(n)))
(1) é(t1)
+ZJ pi(t1) <J o P20

<(([7 e steaste (w(a»)))dn)- - Jat)ao,

(2.69)

for some fixed T, t < T < f3. Clearly, k(t) is a nondecreasing continuous function and
k(a) = ®(a(T)). Differentiating k(t) and rewriting, we have

kKl L 3
T Op (e DT WMD) < ki), (2.70)

é(1)
kl(f)— Pz(tz)fz(tz) (97! (w(t2)))dtz

noorg(t) o(t2) Bt 2)
+Z Pz(l‘z)< ¢(a)P3(f3)<"'(J( pi1(ticn)

=3 ¢(0¢) [} )

x(j;z;l}im)ﬁ(t»gwl(w(t»))dti) dt,-l)- - ')df3> b,
(2.71)
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Using the same procedures from (2.51) to (2.65) to the equality (2.71), we have

$(t)
% J p2(t) fo(ty)dt
¢(t2) d(ti1)
+ZJ pa( t2< p3(ts)- - (L(M pi(ti)fi(ti)dti)'"dt3)dt2>
(2.72)
Koo )
2@ k@) = ¢ O W) gy 9 O (@0)fi90). (2.73)

In the inequality (2.73), setting t = s and integrating from « to ¢, using the definition of
G», we obtain

ki(s) ()

Gy (k(t)) <G (X) J P S)wdS'l’ ¢(a)p1(5)f1(5)d5. (274)

Finally, from the inequalities (2.72) and (2.74), we get
k(t) < Gy [Go(@(a(T))) +Fi(1)], (2.75)
where the function F;(¢) is defined in (2.46). In particular, for T = t, we find that the de-

sired inequality (2.46) follows by the inequalities u(t) < ¢~ !(w(t)) and w(t) < O (k(1)).
This completes the proof. O

When ¢(u) = uP (p > 1 is a constant) in Theorem 2.6, we get the following Ou-Iang
type-retarded integral inequality with iterated integrals.

CoROLLARY 2.7. Let u, a, fi, pi, ¢, and g(u) be as in Theorem 2.6 and let p > 1 be a con-
stant. If

o(t)
uP(t) < a(t) +J pi(t) filt)u(t)g(u(t))dn

J Pl t) ( Pz(l‘z)( <J:(ZZ)PH(21)

o(ti-1)
x(JW) it ﬁ(t,-)u(ti)g(u(ti))dt,) dt,-l)- : ->dt2> dt,
(2.76)

forany t €], then

B V(p-1)
u(t)s{G [G3( (p- 1/P(t))+%F1(t)]} ! (2.77)
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fort€[a, Ts], where Ts €1 is chosen so that [G3(aP~ VP (t)+(p — 1)/p)F1(t)]€Dom (G5 '),

Gs(r) = J ds r>ry>0, (2.78)

ng(WVP1(s))’
G5! denotes the inverse function of Gs, and Fy(t) is defined in (2.48) for any t € I.

3. Applications

In this section, we will show that our results are directly useful in proving the global exis-
tence of solutions to certain integrodifferential equations. First we consider the following
integrodifferential equation:

t—1(t)
pxP ()X (t) =F<t,x(t—'r(t)),I G(t,x(t —T(tl)))dtl) (3.1)

o

for t € I, where p > 1is constant, let F € C(I X R?,R), G C}(I X R,R),and T € C!'(I,I)
be nonincreasing with ¢ — 7(¢t) > 0, £ — 7(t) € C'(I,I), 7'(¢) < 1, and 7(a) = 0. The fol-
lowing result provides a bound on the solutions of (3.1).

THEOREM 3.1. Assume that F : I X R?—R is a continuous function, and there exist contin-
uous nonnegative functions b;(t), i = 1,2, such that

|F(t,u,v)| < bi(H)g(lul) +bi()|vl,

|G(s,w)| < ba(s)g(Iwl), (3.2)

where the function g is the same as in Theorem 2.4. Let M = max ¢ (1/(1 — 7'(x))). If x(1)
is any solution of the problem (3.1), then

()| = [GTH (G (|x(@) |P) + B[Mb (77,), M2b, () b2 (1) D10, (3.3)

where the functions G,,Gy' are as in Corollary 2.5, 71, = n, + (t1), 7, = n, + 7(t2), for
N> N, €1, and

() oo (¢lm)
BLMby (), M0y ()ba () | Mbar)nys ||| M2 s () i,
(3.4)

where ¢(y) =y —1(y) fory € L.

Proof. It is easy to see that the solution x(#) of the problem (3.1) satisfies the equivalent
integral equation

ti—1(t)
F(n,xm)—r(n),j G(tz,x(tz—r(t2)>>dtz)dn. (35)

[04

xP(n) = xP(a) + Jq

24



16  Journal of Inequalities and Applications

From (3.2), and making the change of variables, we have

50017 < [3(@) 1"+ [ by ()g (0= e(00) D

n rti—7(t)
+J J bi(t1)by(t2)g (| x(t, — 7(t2) | )dt, dty
oo (3.6)

—7(

n=(n)
< [x@|"+ | Mbi7)g(x0n) e,

o

el em=tln)
S M) b g x0) e,

where 77, = 5, + 7(t1), 7, = n, + ©(t2), for #,,%, € I. Now an immediate application of
the inequality established in Corollary 2.5 to (3.6) yields the desired result. O

We next consider the following integrodifferential equation:

(h(t)x (1)) = F(t,x(t — r(t)),L G(t,x(h — r(tl)))dn) (3.7)

fortel, Fe CIxR%4R), Ge CY(IXR,R),and A is positive and continuous in I. The
following theorem provides an upper bound on the solutions of (3.7).

THEOREM 3.2. Assume that F : I X R?—R is a continuous function, and there exist contin-
uous nonnegative functions f;(t), i = 2,3, such that

|F(t,u,v)| < (0] |ulg(lul) + [vI],

1G(s,w)| < fo(s)lwlg(Iwl), (3.8)

where function g is the same as in Theorem 2.6. If x(t) is any solution of the problem (3.7),
then

[x(t)| < exp[G, " (Ge(Ina) + C[ /2(%), /o(s2) 5(55) D] - 1, (3.9)
where G(r) = [ (ds/g(e*)) forr =15 >0, a =1+ |x(a)| + h(a)|x ()| f(f((og h(;) dsy, and
1
C B (1) 1 (t1) VAdsd
L 2 1s] = L&(a) h(s1) Jo Jo (@) M dsods (3.10)

¢(t) 1 ¢(t1) (P(tz) 3d d d
+ — S 53) M dssds,dsy,
L)(a) h(s1) L(a) f(s2) s £(53) sdsyds,

si=s1+1(h), S2 =5+ 71(8), and sz = s3+ 1(t2) for s1,82,83 € .
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Proof. It is easy to see that the solution x(t) of the problem (3.7) satisfies the equivalent
integral equation

x(t) = x() + h(@)x (o) j ﬁdtl
(3.11)

+Kh(1tl) J:F(“”‘(Q‘T(fz))’ J:G(ta),x(ta—r(ts))dt3)dt2dt1.

From (3.8), and making the change of variables, we have
LONEST
%0 +1 2 (@) +h(@)|x @] [ —ds
o) h(s1)

+ - .
o h(51) Jo) fols X(82) 1811 X\S2 s,ds;

h s S x{s gl x(s $3Ads,Asy,
¢(a) (51) $(a) f2 ? ¢(a) f3 ’ 3 3 3652 (1 )

where s; = t; — 7(t;), 5; = si + 7(t;), s; € I for i = 1,2,3. Now when ¢(u) =uand f; = f4 =
.-+ = f, = 0, asuitable application of the inequality given in Theorem 2.6 to (3.12) yields
the desired result. U
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