Skip to main content

Some normed binomial difference sequence spaces related to the \(\ell_{p}\) spaces

Abstract

The aim of this paper is to introduce the normed binomial sequence spaces \(b^{r,s}_{p}(\nabla)\) by combining the binomial transformation and difference operator, where \(1\leq p\leq\infty\). We prove that these spaces are linearly isomorphic to the spaces \(\ell_{p}\) and \(\ell _{\infty}\), respectively. Furthermore, we compute Schauder bases and the α-, β- and γ-duals of these sequence spaces.

1 Introduction and preliminaries

Let w denote the space of all sequences. By \(\ell_{p}\), \(\ell_{\infty }\), c and \(c_{0}\), we denote the spaces of p-absolutely summable, bounded, convergent and null sequences, respectively, where \(1\leq p<\infty\). Let Z be a sequence space, then Kizmaz [1] introduced the following difference sequence spaces:

$$Z(\Delta)=\bigl\{ (x_{k})\in w:(\Delta x_{k})\in Z\bigr\} $$

for \(Z=\ell_{\infty},c,c_{0}\), where \(\Delta x_{k}=x_{k}-x_{k+1}\) for each \(k\in\mathbb{N}=\{1,2,3,\ldots\}\), the set of positive integers. Since then, many authors have studied further generalization of the difference sequence spaces [26]. Moreover, Altay and Polat [7], Başarir and Kara [812], Kara [13], Kara and İlkhan [14], Polat and Başar [15], and many others have studied new sequence spaces from a matrix point of view that represent difference operators.

For an infinite matrix \(A=(a_{n,k})\) and \(x=(x_{k})\in w\), the A-transform of x is defined by \(Ax=\{(Ax)_{n}\}\) and is supposed to be convergent for all \(n\in\mathbb{N}\), where \((Ax)_{n}=\sum_{k=0}^{\infty}a_{n,k}x_{k}\). For two sequence spaces X, Y and an infinite matrix \(A=(a_{n,k})\), the sequence space \(X_{A}\) is defined by \(X_{A}=\{x=(x_{k})\in w:Ax \in X\}\), which is called the domain of matrix A in the space X. By \((X: Y)\), we denote the class of all matrices such that \(X \subseteq Y_{A}\).

The Euler means \(E^{r}\) of order r is defined by the matrix \(E^{r}=(e_{n,k}^{r})\), where \(0< r<1\) and

$$e_{n,k}^{r}= \textstyle\begin{cases} \left({\scriptsize\begin{matrix}{} n\cr k \end{matrix}} \right)(1-r)^{n-k}r^{k}& \text{if $0\leq k\leq n$},\\ 0& \text{if $k>n$}. \end{cases} $$

The Euler sequence spaces \(e^{r}_{p}\) and \(e^{r}_{\infty}\) were defined by Altay, Başar and Mursaleen [16] as follows:

$$e^{r}_{p}=\left \{x=(x_{k})\in w: \sum _{n}\left \vert \sum _{k=0}^{n} \left ( \begin{matrix} n\\ k \end{matrix} \right ) (1-r)^{n-k}r^{k}x_{k} \right \vert ^{p}< \infty \right \} $$

and

$$e^{r}_{\infty}=\left \{x=(x_{k})\in w: \sup _{n\in\mathbb{N}}\left \vert \sum_{k=0}^{n} \left ( \begin{matrix} n\\ k \end{matrix} \right ) (1-r)^{n-k}r^{k}x_{k} \right \vert < \infty \right \}. $$

Altay and Polat [7] defined further generalization of the Euler sequence spaces \(e^{r}_{0}(\nabla)\), \(e^{r}_{c}(\nabla)\) and \(e^{r}_{\infty}(\nabla)\) by

$$\begin{aligned} &e^{r}_{0}(\nabla)= \bigl\{ x=(x_{k})\in w: ( \nabla x_{k})\in e^{r}_{0} \bigr\} , \\ &e^{r}_{c}(\nabla)= \bigl\{ x=(x_{k})\in w: ( \nabla x_{k})\in e^{r}_{c} \bigr\} \end{aligned}$$

and

$$\begin{aligned} e^{r}_{\infty}(\nabla)= \bigl\{ x=(x_{k})\in w: (\nabla x_{k})\in e^{r}_{\infty} \bigr\} , \end{aligned}$$

where \(\nabla x_{k}=x_{k}-x_{k-1}\) for each \(k\in\mathbb{N}\). Here any term with negative subscript is equal to naught. Many authors have used especially the Euler matrix for defining new sequence spaces, for instance, Kara and Başarir [17], Karakaya and Polat [18] and Polat and Başar [15].

Recently Bişgin [19, 20] defined another type of generalization of the Euler sequence spaces and introduced the binomial sequence spaces \(b^{r,s}_{0}\), \(b^{r,s}_{c}\), \(b^{r,s}_{\infty }\) and \(b^{r,s}_{p}\). Let \(r,s\in\mathbb{R}\) and \(r+s\neq0\). Then the binomial matrix \(B^{r,s}=(b_{n,k}^{r,s})\) is defined by

$$b_{n,k}^{r,s}= \textstyle\begin{cases} \frac{1}{(s+r)^{n}}\left({\scriptsize\begin{matrix}{} n\cr k\end{matrix}} \right)s^{n-k}r^{k}& \text{if $0\leq k\leq n$},\\ 0& \text{if $k>n$}, \end{cases} $$

for all \(k,n\in\mathbb{N}\). For \(sr>0\) we have

  1. (i)

    \(\Vert B^{r,s} \Vert <\infty\),

  2. (ii)

    \(\lim_{n\rightarrow\infty}b_{n,k}^{r,s}=0\) for each \(k\in \mathbb{N}\),

  3. (iii)

    \(\lim_{n\rightarrow\infty}\sum_{k}b_{n,k}^{r,s}=1\).

Thus, the binomial matrix \(B^{r,s}\) is regular for \(sr>0\). Unless stated otherwise, we assume that \(sr >0\). If we take \(s+r =1\), we obtain the Euler matrix \(E^{r}\). So the binomial matrix generalizes the Euler matrix. Bişgin [20] defined the following spaces of binomial sequences:

$$b^{r,s}_{p}=\left \{x=(x_{k})\in w: \sum _{n}\left \vert \frac{1}{(s+r)^{n}}\sum _{k=0}^{n}\left ( \begin{matrix} n\\ k \end{matrix} \right )s^{n-k}r^{k}x_{k} \right \vert ^{p}< \infty \right \} $$

and

$$b^{r,s}_{\infty}=\left \{x=(x_{k})\in w: \sup _{n\in\mathbb{N}}\left \vert \frac {1}{(s+r)^{n}}\sum _{k=0}^{n}\left ( \begin{matrix} n\\ k \end{matrix} \right )s^{n-k}r^{k}x_{k} \right \vert < \infty \right \}. $$

The main purpose of the present paper is to study the normed difference spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla)\) of the binomial sequence whose \(B^{r,s}(\nabla)\)-transforms are in the spaces \(\ell_{p}\) and \(\ell_{\infty}\), respectively. These new sequence spaces are the generalization of the sequence spaces defined in [7] and [20]. Also, we compute the bases and α-, β- and γ-duals of these sequence spaces.

2 The binomial difference sequence spaces

In this section, we introduce the spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla)\) and prove that these sequence spaces are linearly isomorphic to the spaces \(\ell_{p}\) and \(\ell_{\infty}\), respectively.

We first define the binomial difference sequence spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla)\) by

$$b^{r,s}_{p}(\nabla)= \bigl\{ x=(x_{k})\in w: (\nabla x_{k})\in b^{r,s}_{p} \bigr\} $$

and

$$b^{r,s}_{\infty}(\nabla)= \bigl\{ x=(x_{k})\in w: (\nabla x_{k})\in b^{r,s}_{\infty} \bigr\} . $$

Let us define the sequence \(y=(y_{n})\) as the \(B^{r,s}(\nabla )\)-transform of a sequence \(x=(x_{k})\), that is,

$$ y_{n}= \bigl[B^{r,s}(\nabla x_{k}) \bigr]_{n}=\frac{1}{(s+r)^{n}}\sum_{k=0}^{n} \left ( \begin{matrix} n\\ k \end{matrix} \right )s^{n-k}r^{k}(\nabla x_{k}) $$
(2.1)

for each \(n\in\mathbb{N}\). Then the binomial difference sequence spaces \(b^{r,s}_{p}(\nabla)\) or \(b^{r,s}_{\infty}(\nabla)\) can be redefined by all sequences whose \(B^{r,s}(\nabla)\)-transforms are in the space \(\ell_{p}\) or \(\ell_{\infty}\).

Theorem 2.1

The sequence spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla )\) are complete linear metric spaces with the norm defined by

$$f_{b^{r,s}_{p}(\nabla)}(x)= \Vert y \Vert _{p}= \Biggl(\sum _{n=1}^{\infty} \vert y_{n} \vert ^{p} \Biggr)^{\frac{1}{p}} $$

and

$$f_{b^{r,s}_{\infty}(\nabla)}(x)= \Vert y \Vert _{\infty}=\sup_{n\in\mathbb{N}} \vert y_{n} \vert , $$

where \(1\leq p<\infty\) and the sequence \(y=(y_{n})\) is defined by the \(B^{r,s}(\nabla)\)-transform of x.

Proof

The proof of the linearity is a routine verification. It is obvious that \(f_{b^{r,s}_{p}}(\alpha x)= \vert \alpha \vert f_{b^{r,s}_{p}}(x)\) and \(f_{b^{r,s}_{p}}(x)=0\) if and only if \(x=\theta\) for all \(x\in b^{r,s}_{p}(\nabla)\), where θ is the zero element in \(b^{r,s}_{p}\) and \(\alpha\in\mathbb{R}\). We consider \(x,z \in b^{r,s}_{p}(\nabla)\), then we have

$$\begin{aligned} f_{b^{r,s}_{p}(\nabla)}(x+z)&= \biggl(\sum_{n} \bigl\vert \bigl(B^{r,s} \bigl[\nabla (x_{k}+z_{k}) \bigr] \bigr)_{n} \bigr\vert ^{p} \biggr)^{\frac{1}{p}} \\ &\leq \biggl(\sum_{n} \bigl\vert \bigl[B^{r,s}(\nabla x_{k}) \bigr]_{n} \bigr\vert ^{p} \biggr)^{\frac {1}{p}}+ \biggl(\sum_{n} \bigl\vert \bigl[B^{r,s}(\nabla z_{k}) \bigr]_{n} \bigr\vert ^{p} \biggr)^{\frac {1}{p}} = f_{b^{r,s}_{p}(\nabla)}(x)+f_{b^{r,s}_{p}(\nabla)}(z). \end{aligned}$$

Hence \(f_{b^{r,s}_{p}(\nabla)}\) is a norm on the space \(b^{r,s}_{p}(\nabla)\).

Let \((x_{m})\) be a Cauchy sequence in \(b^{r,s}_{p}(\nabla)\), where \(x_{m}=(x_{m_{k}})_{k=1}^{\infty}\in b^{r,s}_{p}(\nabla)\) for each \(m\in\mathbb{N}\). For every \(\varepsilon>0\), there is a positive integer \(m_{0}\) such that \(f_{b^{r,s}_{p}(\nabla)}( x_{m}-x_{l})<\varepsilon\) \(\text{for } m,l\geq m_{0}\). Then we get

$$\bigl\vert \bigl(B^{r,s} \bigl[\nabla(x_{m_{k}}-x_{l_{k}}) \bigr] \bigr)_{n} \bigr\vert \leq \biggl(\sum _{n} \bigl\vert \bigl(B^{r,s} \bigl[ \nabla(x_{m_{k}}-x_{l_{k}}) \bigr] \bigr)_{n} \bigr\vert ^{p} \biggr)^{\frac {1}{p}}< \varepsilon $$

for \(m,l\geq m_{0}\) and each \(k\in\mathbb{N}\). So \((B^{r,s}(\nabla x_{m_{k}}))_{m=1}^{\infty}\) is a Cauchy sequence in the set of real numbers \(\mathbb{R}\). Since \(\mathbb{R}\) is complete, we have \(\lim_{m\rightarrow\infty}B^{r,s}(\nabla x_{m_{k}})=B^{r,s}(\nabla x_{k})\) for each \(k\in\mathbb{N}\). We compute

$$\begin{aligned} \sum_{n=0}^{i} \bigl\vert \bigl(B^{r,s} \bigl[\nabla(x_{m_{k}}-x_{l_{k}}) \bigr] \bigr)_{n} \bigr\vert \leq f_{b^{r,s}_{p}(\nabla)}( x_{m}-x_{l})< \varepsilon \end{aligned}$$
(2.2)

for \(m>m_{0}\). We take i and l →∞, then the inequality (2.2) implies that

$$f_{b^{r,s}_{p}(\nabla)}( x_{m}-x)\rightarrow0. $$

We have

$$f_{b^{r,s}_{p}(\nabla)}(x)\leq f_{b^{r,s}_{p}(\nabla )}(x_{m}-x)+f_{b^{r,s}_{p}(\nabla)}(x_{m})< \infty, $$

that is, \(x\in b^{r,s}_{p}(\nabla)\). Thus, the space \(b^{r,s}_{p}(\nabla )\) is complete. For the space \(b^{r,s}_{\infty}(\nabla)\), the proof can be completed in a similar way. So, we omit the detail. □

Theorem 2.2

The sequence spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla )\) are linearly isomorphic to the spaces \(\ell_{p}\) and \(\ell_{\infty}\), respectively, where \(1\leq p< \infty\).

Proof

Similarly, we only prove the theorem for the space \(b^{r,s}_{p}(\nabla)\). To prove \(b^{r,s}_{p}(\nabla)\cong\ell _{p}\), we must show the existence of a linear bijection between the spaces \(b^{r,s}_{p}(\nabla)\) and \(\ell_{p}\).

Consider \(T:b^{r,s}_{p}(\nabla)\rightarrow\ell_{p}\) by \(T(x)=B^{r,s}(\nabla x_{k})\). The linearity of T is obvious and \(x=\theta\) whenever \(T(x)=\theta\). Therefore, T is injective.

Let \(y=(y_{n})\in\ell_{p} \) and define the sequence \(x=(x_{k})\) by

$$\begin{aligned} x_{k}=\sum_{i=0}^{k}(s+r)^{i} \sum_{j=i}^{k} \left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}y_{i} \end{aligned}$$
(2.3)

for each \(k \in\mathbb{N}\). Then we have

$$\begin{aligned} f_{b^{r,s}_{p}(\nabla)}(x) =& \bigl\Vert \bigl[B^{r,s}(\nabla x_{k}) \bigr]_{n} \bigr\Vert _{p} \\ =&\left (\sum_{n=1}^{\infty} \left \vert \frac{1}{(s+r)^{n}}\sum_{k=0}^{n} \left ( \begin{matrix} n\\ k \end{matrix} \right )s^{n-k}r^{k}( \nabla x_{k}) \right \vert ^{p} \right )^{\frac{1}{p}} \\ =& \Biggl(\sum_{n=1}^{\infty} \vert y_{n} \vert ^{p} \Biggr)^{\frac{1}{p}} = \Vert y \Vert _{p}< \infty, \end{aligned}$$

which implies that \(x\in b^{r,s}_{p}(\nabla)\) and \(T(x)=y\). Consequently, T is surjective and is norm preserving. Thus, \(b^{r,s}_{p}(\nabla)\cong\ell_{p}\). □

3 The Schauder basis and α-, β- and γ-duals

For a normed space \((X, \Vert \cdot \Vert )\), a sequence \(\{ x_{k}:x_{k}\in X\}_{k\in\mathbb{N}}\) is called a Schauder basis [21] if for every \(x\in X\), there is a unique scalar sequence \((\lambda_{k})\) such that \(\Vert x-\sum_{k=0}^{n}\lambda _{k}x_{k} \Vert \rightarrow0 \text{ as } n\rightarrow\infty\). Next, we shall give a Schauder basis for the sequence space \(b_{p}^{r,s}(\nabla)\).

We define the sequence \(g^{(k)}(r,s)=\{g^{(k)}_{i}(r,s)\}_{i \in\mathbb {N}}\) by

$$g^{(k)}_{i}(r,s)= \textstyle\begin{cases} 0& \text{if $0\leq i < k$},\\ (s+r)^{k}\sum_{j=k}^{i}\bigl({\scriptsize\begin{matrix}{} j\cr k\end{matrix}} \bigr)r^{-j}(-s)^{j-k}& \text{if $i\geq k$}, \end{cases} $$

for each \(k\in\mathbb{N}\).

Theorem 3.1

The sequence \((g^{(k)}(r,s))_{k\in\mathbb{N}}\) is a Schauder basis for the binomial sequence spaces \(b_{p}^{r,s}(\nabla)\) and every \(x=(x_{i})\in b_{p}^{r,s}(\nabla)\) has a unique representation by

$$ x=\sum_{k} \lambda_{k}(r,s) g^{(k)}(r,s), $$
(3.1)

where \(1\leq p<\infty\) and \(\lambda_{k}(r,s)= [B^{r,s}(\nabla x_{i})]_{k}\) for each \(k\in\mathbb{N}\).

Proof

Obviously, \(B^{r,s}(\nabla g^{(k)}_{i}(r,s))=e_{k}\in\ell_{p}\), where \(e_{k}\) is the sequence with 1 in the kth place and zeros elsewhere for each \(k\in\mathbb{N}\). This implies that \(g^{(k)}(r,s)\in b_{p}^{r,s}(\nabla)\) for each \(k\in\mathbb{N}\).

For \(x \in b_{p}^{r,s}(\nabla)\) and \(m\in\mathbb{N}\), we put

$$x^{(m)}=\sum_{k=0}^{m} \lambda_{k}(r,s) g^{(k)}(r,s). $$

By the linearity of \(B^{r,s}(\nabla)\), we have

$$B^{r,s} \bigl(\nabla x^{(m)}_{i} \bigr)=\sum _{k=0}^{m}\lambda _{k}(r,s)B^{r,s} \bigl(\nabla g^{(k)}_{i}(r,s) \bigr)=\sum _{k=0}^{m}\lambda_{k}(r,s)e_{k} $$

and

$$\bigl[B^{r,s} \bigl(\nabla \bigl(x_{i}-x_{i}^{(m)} \bigr) \bigr) \bigr]_{k}= \textstyle\begin{cases} 0& \text{if $0\leq k \leq m$},\\ [B^{r,s}(\nabla x_{i})]_{k}& \text{if $k> m$}, \end{cases} $$

for each \(k\in\mathbb{N}\).

For any given \(\varepsilon>0\), there is a positive integer \(m_{0}\) such that

$$\sum_{k=m_{0}+1}^{\infty} \bigl\vert \bigl[B^{r,s}(\nabla x_{i}) \bigr]_{k} \bigr\vert ^{p}< \biggl(\frac {\varepsilon}{2} \biggr)^{p} $$

for all \(k\geq m_{0}\). Then we have

$$\begin{aligned} f_{b^{r,s}_{p}(\nabla)} \bigl( x-x^{(m)} \bigr) =& \Biggl(\sum _{k=m+1 }^{\infty} \bigl\vert \bigl[B^{r,s}(\nabla x_{i}) \bigr]_{k} \bigr\vert ^{p} \Biggr)^{\frac{1}{p}} \\ \leq& \Biggl(\sum_{k=m_{0}+1 }^{\infty} \bigl\vert \bigl[B^{r,s}(\nabla x_{i}) \bigr]_{k} \bigr\vert ^{p} \Biggr)^{\frac {1}{p}} \\ < & \frac{\varepsilon}{2}< \varepsilon, \end{aligned}$$

which implies that \(x \in b_{p}^{r,s}(\nabla)\) is represented as (3.1).

To prove the uniqueness of this representation, we assume that

$$x=\sum_{k} \mu_{k}(r,s) g^{(k)}(r,s). $$

Then we have

$$\bigl[B^{r,s}(\nabla x_{i}) \bigr]_{k}=\sum _{k}\mu_{k}(r,s) \bigl[B^{r,s} \bigl(\nabla g^{(k)}_{i}(r,s) \bigr) \bigr]_{k}=\sum _{k}\mu_{k}(r,s) (e_{k})_{k}= \mu_{k}(r,s), $$

which is a contradiction with the assumption that \(\lambda _{k}(r,s)=[B^{r,s}(\nabla x_{i})]_{k}\) for each \(k \in\mathbb{N}\). This shows the uniqueness of this representation. □

Corollary 3.2

The sequence space \(b_{p}^{r,s}(\nabla)\) is separable, where \(1\leq p<\infty\).

For the duality theory, the study of sequence spaces is more useful when we investigate them equipped with linear topologies. Köthe and Toeplitz [22] first computed duals whose elements can be represented as sequences and defined the α-dual (or Köthe-Toeplitz dual).

For the sequence spaces X and Y, define the multiplier space \(M(X,Y)\) by

$$M(X,Y)= \bigl\{ u=(u_{k})\in w:ux=(u_{k}x_{k})\in Y \text{ for all } x=(x_{k})\in X \bigr\} . $$

Then the α-, β- and γ-duals of a sequence space X are defined by

$$X^{\alpha}=M(X,\ell_{1}),\qquad X^{\beta}=M(X,c)\quad \text{and}\quad X^{\gamma }=M(X,\ell_{\infty}), $$

respectively.

We give the following properties:

$$\begin{aligned} &\sup_{n\in\mathbb{N}} \sum_{k} \vert a_{n,k} \vert ^{q}< \infty, \end{aligned}$$
(3.2)
$$\begin{aligned} &\sup_{k\in\mathbb{N}} \sum_{n} \vert a_{n,k} \vert < \infty, \end{aligned}$$
(3.3)
$$\begin{aligned} &\sup_{n,k\in\mathbb{N}} \vert a_{n,k} \vert < \infty, \end{aligned}$$
(3.4)
$$\begin{aligned} &\lim_{n\rightarrow\infty}a_{n,k}=a_{k} \quad\text{for each } k \in \mathbb{N}, \end{aligned}$$
(3.5)
$$\begin{aligned} &\sup_{K\in\Gamma} \sum_{k} \biggl\vert \sum_{n\in K} a_{n,k} \biggr\vert ^{q}< \infty , \end{aligned}$$
(3.6)
$$\begin{aligned} &\lim_{n\rightarrow\infty}\sum_{k} \vert a_{n,k} \vert =\sum_{k} \Bigl\vert \lim _{n\rightarrow\infty}a_{n,k} \Bigr\vert , \end{aligned}$$
(3.7)

where Γ is the collection of all finite subsets of \(\mathbb{N}\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(1< p\leq\infty\).

Lemma 3.3

[23]

Let \(A=(a_{n,k})\) be an infinite matrix. Then the following statements hold:

  1. (i)

    \(A\in(\ell_{1}:\ell_{1})\) if and only if (3.3) holds.

  2. (ii)

    \(A\in(\ell_{1}:c)\) if and only if (3.4) and (3.5) hold.

  3. (iii)

    \(A\in(\ell_{1}:\ell_{\infty})\) if and only if (3.4) holds.

  4. (iv)

    \(A\in(\ell_{p}:\ell_{1})\) if and only if (3.6) holds with \(\frac {1}{p}+\frac{1}{q}=1\) and \(1< p\leq\infty\).

  5. (v)

    \(A\in( \ell_{p}:c)\) if and only if (3.2) and (3.5) hold with \(\frac{1}{p}+\frac{1}{q}=1\) and \(1< p<\infty\).

  6. (vi)

    \(A\in( \ell_{p}:\ell_{\infty} )\) if and only if (3.2) holds with \(\frac{1}{p}+\frac{1}{q}=1\) and \(1< p<\infty\).

  7. (vii)

    \(A\in( \ell_{\infty}:c )\) if and only if (3.5) and (3.7) hold with \(\frac{1}{p}+\frac{1}{q}=1\) and \(1< p<\infty\).

  8. (viii)

    \(A\in( \ell_{\infty}:\ell_{\infty} )\) if and only if (3.2) holds with \(q=1\).

Theorem 3.4

We define the set \(U_{1}^{r,s}\) and \(U_{2}^{r,s}\) by

$$U_{1}^{r,s}=\left \{u=(u_{k})\in w:\sup _{i\in\mathbb{N}}\sum_{k}\left \vert (s+r)^{i}\sum_{j=i}^{k}\left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}u_{k} \right \vert < \infty \right \} $$

and

$$U_{2}^{r,s}=\left \{u=(u_{k})\in w:\sup _{K\in\Gamma}\sum_{i}\left \vert \sum_{k\in K}(s+r)^{i}\sum _{j=i}^{k}\left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}u_{k} \right \vert ^{q}< \infty \right \}. $$

Then \([b^{r,s}_{1}(\nabla)]^{\alpha}=U_{1}^{r,s}\) and \([b^{r,s}_{p}(\nabla)]^{\alpha}=U_{2}^{r,s}\), where \(1< p\leq\infty\).

Proof

Let \(u=(u_{k})\in w\) and \(x=(x_{k})\) be defined by (2.3), then we have

$$u_{k}x_{k}=\sum_{i=0}^{k}(s+r)^{i} \sum_{j=i}^{k}\left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}u_{k}y_{i}= \bigl(G^{r,s}y \bigr)_{k} $$

for each \(k\in\mathbb{N}\), where \(G^{r,s}=(g^{r,s}_{k,i})\) is defined by

$$g^{r,s}_{k,i}= \textstyle\begin{cases} (s+r)^{i}\sum_{j=i}^{k}\left({\scriptsize\begin{matrix}{} j\cr i \end{matrix}} \right)r^{-j}(-s)^{j-i}u_{k}& \text{if $0\leq i\leq k$},\\ 0& \text{if $i>k$}. \end{cases} $$

Therefore, we deduce that \(ux= (u_{k}x_{k})\in\ell_{1}\) whenever \(x\in b_{1}^{r,s}(\nabla)\) or \(b_{p}^{r,s}(\nabla)\) if and only if \(G^{r,s}y\in\ell_{1}\) whenever \(y\in \ell_{1}\) or \(\ell_{p}\), which implies that \(u=(u_{k})\in[b_{1}^{r,s}(\nabla )]^{\alpha} \text{ or } [b_{p}^{r,s}(\nabla)]^{\alpha}\) if and only if \(G^{r,s}\in(\ell_{1}:\ell_{1})\) and \(G^{r,s}\in(\ell_{p}:\ell_{1})\) by parts (i) and (iv) of Lemma 3.3, we obtain \(u=(u_{k})\in [b_{1}^{r,s}(\nabla)]^{\alpha}\) if and only if

$$\sup_{i\in\mathbb{N}}\sum_{k}\left \vert (s+r)^{i}\sum_{j=i}^{k} \left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}u_{k} \right \vert < \infty $$

and \(u=(u_{k})\in[b_{p}^{r,s}(\nabla)]^{\alpha}\) if and only if

$$\sup_{K\in\Gamma}\sum_{i}\left \vert \sum_{k\in K}(s+r)^{i}\sum _{j=i}^{k}\left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}u_{k} \right \vert ^{q}< \infty. $$

Thus, we have \([b^{r,s}_{1}(\nabla)]^{\alpha}=U_{1}^{r,s}\) and \([b^{r,s}_{p}(\nabla)]^{\alpha}=U_{2}^{r,s}\), where \(1< p\leq\infty\). □

Now, we define the sets \(U_{3}^{r,s}\), \(U_{4}^{r,s}\), \(U_{5}^{r,s}\), \(U_{6}^{r,s}\) and \(U_{7}^{r,s}\) by

$$\begin{aligned} &U_{3}^{r,s}=\left \{u=(u_{k})\in w: \lim _{n\rightarrow\infty} (s+r)^{k}\sum_{i=k}^{n} \sum_{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \text{ exists for each } k \in\mathbb {N} \right \}, \\ &U_{4}^{r,s}=\left \{u=(u_{k})\in w: \sup _{n,k\in\mathbb{N}}\left \vert (s+r)^{k}\sum _{i=k}^{n}\sum_{j=k}^{i} \left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right \vert < \infty \right \}, \\ &U_{5}^{r,s}= \left\{u=(u_{k})\in w: \lim _{n\rightarrow\infty}\sum_{k}\left \vert (s+r)^{k}\sum_{i=k}^{n}\sum _{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right \vert \right. \\ &\left.\phantom{U_{5}^{r,s}=}=\sum_{k}\left \vert \lim _{n\rightarrow\infty}(s+r)^{k}\sum_{i=k}^{n} \sum_{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right \vert \right\}, \\ &U_{6}^{r,s}=\left \{u=(u_{k})\in w: \sup _{n\in\mathbb{N}}\sum_{k=0}^{n}\left \vert (s+r)^{k}\sum_{i=k}^{n} \sum_{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right \vert ^{q}< \infty \right \},\quad 1< q< \infty, \end{aligned}$$

and

$$U_{7}^{r,s}=\left \{u=(u_{k})\in w: \sup _{n\in\mathbb{N}}\sum_{k=0}^{n}\left \vert (s+r)^{k}\sum_{i=k}^{n} \sum_{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right \vert < \infty \right \}. $$

Theorem 3.5

We have the following relations:

  1. (i)

    \([b_{1}^{r,s}(\nabla)]^{ \beta}=U_{3}^{r,s}\cap U_{4}^{r,s}\),

  2. (ii)

    \([b_{p}^{r,s}(\nabla)]^{ \beta}=U_{3}^{r,s}\cap U_{6}^{r,s}\), where \(1< p<\infty\),

  3. (iii)

    \([b_{\infty}^{r,s}(\nabla)]^{ \beta}=U_{3}^{r,s}\cap U_{5}^{r,s}\),

  4. (iv)

    \([b_{1}^{r,s}(\nabla)]^{ \gamma}=U_{4}^{r,s}\),

  5. (v)

    \([b_{p}^{r,s}(\nabla)]^{ \gamma}=U_{6}^{r,s}\), where \(1< p<\infty \),

  6. (vi)

    \([b_{\infty}^{r,s}(\nabla)]^{ \gamma}=U_{7}^{r,s}\).

Proof

Let \(u=(u_{k})\in w\) and \(x=(x_{k})\) be defined by (2.3), then we consider the following equation:

$$\begin{aligned} \sum_{k=0}^{n}u_{k}x_{k}&= \sum_{k=0}^{n}u_{k}\left [ \sum_{i=0}^{k}(s+r)^{i}\sum _{j=i}^{k}\left ( \begin{matrix} j\\ i \end{matrix} \right )r^{-j}(-s)^{j-i}y_{i} \right ] \\ &=\sum_{k=0}^{n}\left [(s+r)^{k} \sum_{i=k}^{n}\sum _{j=k}^{i}\left ( \begin{matrix} j\\ k \end{matrix} \right )r^{-j}(-s)^{j-k}u_{i} \right ]y_{k} = \bigl(U^{r,s}y \bigr)_{n}, \end{aligned}$$

where \(U^{r,s}=(u^{r,s}_{n,k})\) is defined by

$$u_{n,k}= \textstyle\begin{cases} (s+r)^{k}\sum_{i=k}^{n}\sum_{j=k}^{i}\bigl({\scriptsize\begin{matrix}{} j\cr k\end{matrix}} \bigr)r^{-j}(-s)^{j-k}u_{i}&\text{if $0\leq k \leq n$},\\ 0&\text{if $k> n$}. \end{cases} $$

Therefore, we deduce that \(ux= (u_{k}x_{k})\in c\) whenever \(x\in b_{1}^{r,s}(\nabla)\) if and only if \(U^{r,s}y\in c\) whenever \(y\in\ell_{1}\), which implies that \(u=(u_{k})\in[b_{1}^{r,s}(\nabla)]^{ \beta}\) if and only if \(U^{r,s}\in(\ell_{1}:c)\). By Lemma 3.3(ii), we obtain \([b_{1}^{r,s}(\nabla)]^{ \beta}=U_{3}^{r,s}\cap U_{4}^{r,s}\). Using Lemma 3.3(i) and (iii)-(viii) instead of (ii), the proof can be completed in a similar way. So, we omit the details. □

4 Conclusion

By considering the definitions of the binomial matrix \(B^{r,s}=(b^{r,s}_{n,k})\) and the difference operator, we introduce the sequence spaces \(b^{r,s}_{p}(\nabla)\) and \(b^{r,s}_{\infty}(\nabla)\). These spaces are the natural continuations of [1, 7, 20]. Our results are the generalizations of the matrix domain of the Euler matrix of order r. In order to give fully inform the reader on related topics with applications and a possible line of further investigation, the e-book [24] is added to the list of references.

References

  1. Kizmaz, H: On certain sequence spaces. Can. Math. Bull. 24, 169-176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bektaş, C, Et, M, Çolak, R: Generalized difference sequence spaces and their dual spaces. J. Math. Anal. Appl. 292, 423-432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dutta, H: Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11, 60-67 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Reddy, BS: On some generalized difference sequence spaces. Soochow J. Math. 26, 377-386 (2010)

    MathSciNet  Google Scholar 

  5. Tripathy, BC, Esi, A: On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math. 31, 333-340 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Tripathy, BC, Esi, A: A new type of difference sequence spaces. Int. J. Sci. Technol. 1, 147-155 (2006)

    Google Scholar 

  7. Altay, B, Polat, H: On some new Euler difference sequence spaces. Southeast Asian Bull. Math. 30, 209-220 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Başarir, M, Kara, EE: On compact operators on the Riesz \({B}^{m}\)-difference sequence spaces. Iran. J. Sci. Technol. 35, 279-285 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Başarir, M, Kara, EE: On some difference sequence spaces of weighted means and compact operators. Ann. Funct. Anal. 2, 114-129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Başarir, M, Kara, EE: On compact operators on the Riesz \({B}^{m}\)-difference sequence spaces II. Iran. J. Sci. Technol. 33, 371-376 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Başarir, M, Kara, EE: On the B-difference sequence space derived by generalized weighted mean and compact operators. J. Math. Anal. Appl. 391, 67-81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Başarir, M, Kara, EE: On the mth order difference sequence space of generalized weighted mean and compact operators. Acta Math. Sci. 33, 797-813 (2013)

    Article  MATH  Google Scholar 

  13. Kara, EE: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kara, EE, İlkhan, M: On some Banach sequence spaces derived by a new band matrix. Br. J. Math. Comput. Sci. 9, 141-159 (2015)

    Article  Google Scholar 

  15. Polat, H, Başar, F: Some Euler spaces of difference sequences of order m. Acta Math. Sci. 27, 254-266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Altay, B, Başar, F, Mursaleen, M: On the Euler sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) I. Inf. Sci. 176, 1450-1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kara, EE, Başarir, M: On compact operators and some Euler \({B}^{(m)}\)-difference sequence spaces. J. Math. Anal. Appl. 379, 499-511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karakaya, V, Polat, H: Some new paranormed sequence spaces defined by Euler and difference operators. Acta Sci. Math. 76, 87-100 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Bişgin, MC: The binomial sequence spaces of nonabsolute type. J. Inequal. Appl. 2016, 309 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bişgin, MC: The binomial sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) and geometric properties. J. Inequal. Appl. 2016, 304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Choudhary, B, Nanda, S: Functional Analysis with Application. Wiley, New Delhi (1989)

    MATH  Google Scholar 

  22. Köthe, G, Toeplitz, O: Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen. J. Reine Angew. Math. 171, 193-226 (1934)

    MathSciNet  MATH  Google Scholar 

  23. Stieglitz, M, Tietz, H: Matrixtransformationen von folgenräumen eine ergebnisubersict. Math. Z. 154, 1-16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Başar, F: Summability Theory and its Applications. Bentham Science, Istanbul (2012). ISBN:978-1-60805-420-6

    MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for his/her constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Meng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JM came up with the main ideas and drafted the manuscript. MS revised the paper. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Meng, J. Some normed binomial difference sequence spaces related to the \(\ell_{p}\) spaces. J Inequal Appl 2017, 128 (2017). https://doi.org/10.1186/s13660-017-1401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1401-4

Keywords