Open Access

On Lyapunov-type inequalities for \((p,q)\)-Laplacian systems

Journal of Inequalities and Applications20172017:100

DOI: 10.1186/s13660-017-1377-0

Received: 2 January 2017

Accepted: 21 April 2017

Published: 4 May 2017

Abstract

We establish Lyapunov-type inequalities for a system involving one-dimensional \((p_{i},q_{i})\)-Laplacian operators (\(i=1,2\)). Next, the obtained inequalities are used to derive some geometric properties of the generalized spectrum associated to the considered problem.

Keywords

Lyapunov-type inequalities \((p,q)\)-Laplacian system generalized eigenvalues generalized spectrum

MSC

26D10 15A42 39B72

1 Introduction

In this paper, we are concerned with the following system involving one-dimensional \((p_{i},q_{i})\)-Laplacian operators (\(i=1,2\)):
$$\begin{aligned} \mbox{(S)}:\quad \textstyle\begin{cases} -( \vert u'(x) \vert ^{p_{1}-2}u'(x))'-( \vert u'(x) \vert ^{q_{1}-2}u'(x))'=f(x) \vert u(x) \vert ^{\alpha-2} \vert v(x) \vert ^{\beta}u(x),\\ -( \vert v'(x) \vert ^{p_{2}-2}v'(x))'-( \vert v'(x) \vert ^{q_{2}-2}v'(x))'=g(x) \vert u(x) \vert ^{\alpha} \vert v(x) \vert ^{\beta-2}v(x) \end{cases}\displaystyle \end{aligned}$$
on the interval \((a,b)\), under Dirichlet boundary conditions
$$\mbox{(DBC)}:\quad u(a)=u(b)=v(a)=v(b)=0. $$
System (S) is investigated under the assumptions
$$\alpha\geq 2,\qquad \beta\geq 2,\qquad p_{i}\geq 2,\qquad q_{i}\geq 2, \quad i=1,2, $$
and
$$ \frac{2\alpha}{p_{1}+q_{1}}+\frac{2\beta}{p_{2}+q_{2}}=1. $$
(1)
We suppose also that f and g are two nonnegative real-valued functions such that \((f,g)\in L^{1}(a,b)\times L^{1}(a,b)\). We establish a Lyapunov-type inequality for problem (S)-(DBC). Next, we use the obtained inequality to derive some geometric properties of the generalized spectrum associated to the considered problem.
The standard Lyapunov inequality [1] (see also [2]) states that if the boundary value problem
$$\begin{aligned} \textstyle\begin{cases} u''(t)+q(t)u(t)=0,\quad a< t< b,\\ u(a)=u(b)=0, \end{cases}\displaystyle \end{aligned}$$
has a nontrivial solution, where \(q: [a,b]\to \mathbb{R}\) is a continuous function, then
$$ \int_{a}^{b} \bigl\vert q(t) \bigr\vert \,dt> \frac{4}{b-a}. $$
(2)
Inequality (2) was successfully applied to oscillation theory, stability criteria for periodic differential equations, estimates for intervals of disconjugacy, and eigenvalue bounds for ordinary differential equations. In [3] (see also [4]), Elbert extended inequality (2) to the one-dimensional p-Laplacian equation. More precisely, he proved that, if u is a nontrivial solution of the problem
$$\begin{aligned} \textstyle\begin{cases} ( \vert u' \vert ^{p-2}u')'+h(t) \vert u \vert ^{p-2}u=0,\quad a< t< b,\\ u(a)=u(b)=0, \end{cases}\displaystyle \end{aligned}$$
where \(1< p<\infty\) and \(h\in L^{1}(a,b)\), then
$$ \int_{a}^{b} \bigl\vert h(t) \bigr\vert \,dt> \frac{2^{p}}{(b-a)^{p-1}}. $$
(3)
Observe that for \(p=2\), (3) reduces to (2). Inequality (3) was extended in [5] to the following problem involving the φ-Laplacian operator:
$$\begin{aligned} \textstyle\begin{cases} (\varphi(u'))'+w(t)\varphi(u)=0,\quad a< t< b,\\ u(a)=u(b)=0, \end{cases}\displaystyle \end{aligned}$$
where \(\varphi: \mathbb{R}\to \mathbb{R}\) is a convex nondecreasing function satisfying a \(\Delta_{2}\) condition. In [6], Nápoli and Pinasco considered the quasilinear system of resonant type
$$\begin{aligned} \textstyle\begin{cases} -( \vert u'(x) \vert ^{p-2}u'(x))'= f(x) \vert u(x) \vert ^{\alpha-2} \vert v(x) \vert ^{\beta}u(x),\\ -( \vert v'(x) \vert ^{q-2}v'(x))'= g(x) \vert u(x) \vert ^{\alpha} \vert v(x) \vert ^{\beta-2}v(x) \end{cases}\displaystyle \end{aligned}$$
(4)
on the interval \((a,b)\), with Dirichlet boundary conditions
$$ u(a)=u(b)=v(a)=v(b)=0. $$
(5)
Under the assumptions \(p,q>1\), \(f,g\in L^{1}(a,b)\), \(f,g\geq 0\), \(\alpha,\beta\geq 0\), and
$$\frac{\alpha}{p}+\frac{\beta}{q}=1, $$
it was proved (see [6], Theorem 1.5) that if (4)-(5) has a nontrivial solution, then
$$ 2^{\alpha+\beta} \leq (b-a)^{\frac{\alpha}{p'}+\frac{\beta}{q'}} \biggl( \int_{a}^{b} f(x)\,dx \biggr)^{\frac{\alpha}{p}} \biggl( \int_{a}^{b} g(x)\,dx \biggr)^{\frac{\beta}{q}}, $$
(6)
where \(p'=\frac{p}{p-1}\) and \(q'=\frac{q}{q-1}\). Some nice applications to generalized eigenvalues are also presented in [6]. Different generalizations and extensions of inequality (6) were obtained by many authors. In this direction, we refer the reader to [716] and the references therein. For other results concerning Lyapunov-type inequalities, we refer the reader to [1729] and the references therein.

2 Lyapunov-type inequalities

A Lyapunov-type inequality for problem (S)-(DBC) is established in this section, and some particular cases are discussed.

Theorem 2.1

If (S)-(DBC) admits a nontrivial solution \((u,v)\in C^{2}[a,b]\times C^{2}[a,b]\), then
$$\begin{aligned} & \biggl[\min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{\frac{2\alpha}{p_{1}+q_{1}}} \biggl[\min \biggl\{ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}}, \frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{\frac{2\beta}{p_{2}+q_{2}}} \\ &\quad \leq \biggl(\frac{1}{2} \int_{a}^{b} f(x)\,dx \biggr)^{\frac{2\alpha}{p_{1}+q_{1}}} \biggl( \frac{1}{2} \int_{a}^{b} g(x)\,dx \biggr)^{\frac{2\beta}{p_{2}+q_{2}}}. \end{aligned}$$
(7)

Proof

Let \((u,v)\in C^{2}[a,b]\times C^{2}[a,b]\) be a nontrivial solution to (S)-(DBC). Let \((x_{0},y_{0})\in (a,b)\times (a,b)\) be such that
$$\bigl\vert u(x_{0}) \bigr\vert =\max\bigl\{ \bigl\vert u(x) \bigr\vert :\, a\leq x\leq b\bigr\} $$
and
$$\bigl\vert v(y_{0}) \bigr\vert =\max\bigl\{ \bigl\vert v(x) \bigr\vert :\, a\leq x\leq b\bigr\} . $$
From the boundary conditions (DBC), we can write that
$$2u(x_{0})= \int_{a}^{x_{0}} u'(x)\,dx - \int_{x_{0}}^{b} u'(x)\,dx, $$
which yields
$$2 \bigl\vert u(x_{0}) \bigr\vert \leq \int_{a}^{b} \bigl\vert u'(x) \bigr\vert \,dx. $$
Using Hölder’s inequality with parameters \(p_{1}\) and \(p_{1}'=\frac{p_{1}}{p_{1}-1}\), we get
$$2 \bigl\vert u(x_{0}) \bigr\vert \leq (b-a)^{\frac{1}{p_{1}'}} \biggl( \int_{a}^{b} \bigl\vert u'(x) \bigr\vert ^{p_{1}}\,dx \biggr)^{\frac{1}{p_{1}}}, $$
that is,
$$ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}} \bigl\vert u(x_{0}) \bigr\vert ^{p_{1}} \leq \int_{a}^{b} \bigl\vert u'(x) \bigr\vert ^{p_{1}}\,dx. $$
(8)
Similarly, using Hölder’s inequality with parameters \(q_{1}\) and \(q_{1}'=\frac{q_{1}}{q_{1}-1}\), we get
$$ \frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \bigl\vert u(x_{0}) \bigr\vert ^{q_{1}} \leq \int_{a}^{b} \bigl\vert u'(x) \bigr\vert ^{q_{1}}\,dx. $$
(9)
By repeating the same argument for the function v, we obtain
$$ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}} \bigl\vert v(y_{0}) \bigr\vert ^{p_{2}} \leq \int_{a}^{b} \bigl\vert v'(x) \bigr\vert ^{p_{2}}\,dx $$
(10)
and
$$ \frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \bigl\vert v(y_{0}) \bigr\vert ^{q_{2}} \leq \int_{a}^{b} \bigl\vert v'(x) \bigr\vert ^{q_{2}}\,dx. $$
(11)
Now, multiplying the first equation of (S) by u and integrating over \((a,b)\), we obtain
$$ \int_{a}^{b} \bigl\vert u'(x) \bigr\vert ^{p_{1}}\,dx+ \int_{a}^{b} \bigl\vert u'(x) \bigr\vert ^{q_{1}}\,dx= \int_{a}^{b} f(x) \bigl\vert u(x) \bigr\vert ^{\alpha}\bigl\vert v(x) \bigr\vert ^{\beta}\,dx. $$
(12)
Multiplying the second equation of (S) by v and integrating over \((a,b)\), we obtain
$$ \int_{a}^{b} \bigl\vert v'(x) \bigr\vert ^{p_{2}}\,dx+ \int_{a}^{b} \bigl\vert v'(x) \bigr\vert ^{q_{2}}\,dx= \int_{a}^{b} g(x) \bigl\vert u(x) \bigr\vert ^{\alpha}\bigl\vert v(x) \bigr\vert ^{\beta}\,dx. $$
(13)
Using (8), (9) and (12), we obtain
$$\bigl\vert u(x_{0}) \bigr\vert ^{\alpha}\bigl\vert v(y_{0}) \bigr\vert ^{\beta}\int_{a}^{b} f(x) \,dx\geq \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}} \bigl\vert u(x_{0}) \bigr\vert ^{p_{1}}+\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \bigl\vert u(x_{0}) \bigr\vert ^{q_{1}}, $$
which yields
$$\bigl\vert u(x_{0}) \bigr\vert ^{\alpha}\bigl\vert v(y_{0}) \bigr\vert ^{\beta}\int_{a}^{b} f(x) \,dx\geq \min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \bigl( \bigl\vert u(x_{0}) \bigr\vert ^{p_{1}}+ \bigl\vert u(x_{0}) \bigr\vert ^{q_{1}} \bigr). $$
Using the inequality
$$A+B\geq 2\sqrt{A}\sqrt{B} $$
with \(A= \vert u(x_{0}) \vert ^{p_{1}}\) and \(B= \vert u(x_{0}) \vert ^{q_{1}}\), we get
$$ \min \biggl\{ \frac{2^{p_{1}+1}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}+1}}{(b-a)^{q_{1}-1}} \biggr\} \leq \bigl\vert u(x_{0}) \bigr\vert ^{\alpha-\frac{p_{1}+q_{1}}{2}} \bigl\vert v(y_{0}) \bigr\vert ^{\beta} \int_{a}^{b} f(x)\,dx. $$
(14)
Similarly, using (10), (11) and (13), we obtain
$$ \min \biggl\{ \frac{2^{p_{2}+1}}{(b-a)^{p_{2}-1}},\frac{2^{q_{2}+1}}{(b-a)^{q_{2}-1}} \biggr\} \leq \bigl\vert u(x_{0}) \bigr\vert ^{\alpha} \bigl\vert v(y_{0}) \bigr\vert ^{\beta-\frac{p_{2}+q_{2}}{2}} \int_{a}^{b} g(x)\,dx. $$
(15)
Raising inequality (14) to a power \(e_{1}>0\), inequality (15) to a power \(e_{2}>0\), and multiplying the resulting inequalities, we obtain
$$\begin{aligned} & \biggl[\min \biggl\{ \frac{2^{p_{1}+1}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}+1}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{e_{1}} \biggl[\min \biggl\{ \frac{2^{p_{2}+1}}{(b-a)^{p_{2}-1}},\frac{2^{q_{2}+1}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{e_{2}} \\ &\quad \leq \bigl\vert u(x_{0}) \bigr\vert ^{ (\alpha-\frac{p_{1}+q_{1}}{2} )e_{1}+\alpha e_{2}} \bigl\vert v(y_{0}) \bigr\vert ^{\beta e_{1}+ (\beta-\frac{p_{2}+q_{2}}{2} )e_{2}} \biggl( \int_{a}^{b} f(x)\,dx \biggr)^{e_{1}} \biggl( \int_{a}^{b} g(x)\,dx \biggr)^{e_{2}}. \end{aligned}$$
Next, we take \((e_{1},e_{2})\) any solution of the homogeneous linear system
$$\begin{aligned} \textstyle\begin{cases} (\alpha-\frac{p_{1}+q_{1}}{2} )e_{1}+\alpha e_{2}= 0,\\ \beta e_{1}+ (\beta-\frac{p_{2}+q_{2}}{2} )e_{2}=0. \end{cases}\displaystyle \end{aligned}$$
Using (1), we may take
$$\begin{aligned} \textstyle\begin{cases} e_{1}= \alpha,\\ e_{2}=\frac{\beta(p_{1}+q_{1})}{p_{2}+q_{2}}. \end{cases}\displaystyle \end{aligned}$$
Therefore, we obtain
$$\begin{aligned} &2^{\alpha+\frac{\beta(p_{1}+q_{1})}{p_{2}+q_{2}}} \biggl[\min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{\alpha} \biggl[\min \biggl\{ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}}, \frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{\frac{\beta(p_{1}+q_{1})}{p_{2}+q_{2}}} \\ &\quad \leq \biggl( \int_{a}^{b} f(x)\,dx \biggr)^{\alpha} \biggl( \int_{a}^{b} g(x)\,dx \biggr)^{\frac{\beta(p_{1}+q_{1})}{p_{2}+q_{2}}}. \end{aligned}$$
Using again (1), we get
$$\begin{aligned} &2 \biggl[\min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{\frac{2\alpha}{p_{1}+q_{1}}} \biggl[\min \biggl\{ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}},\frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{\frac{2\beta}{p_{2}+q_{2}}} \\ &\quad \leq \biggl( \int_{a}^{b} f(x)\,dx \biggr)^{\frac{2\alpha}{p_{1}+q_{1}}} \biggl( \int_{a}^{b} g(x)\,dx \biggr)^{\frac{2\beta}{p_{2}+q_{2}}}, \end{aligned}$$
which proves Theorem 2.1. □

As a consequence of Theorem 2.1, we deduce the following result for the case of a single equation.

Corollary 1

Let us assume that there exists a nontrivial solution of
$$\begin{aligned} \textstyle\begin{cases} -( \vert u'(x) \vert ^{p-2}u'(x))'-( \vert u'(x) \vert ^{q-2}u'(x))'=f(x) \vert u(x) \vert ^{\frac{p+q}{2}-2}u(x),\quad x\in (a,b),\\ u(a)=u(b)=0, \end{cases}\displaystyle \end{aligned}$$
where \(p>1\), \(q>1\), \(f\geq 0\), and \(f\in L^{1}(a,b)\). Then
$$\min \biggl\{ \frac{2^{p}}{(b-a)^{p-1}},\frac{2^{q}}{(b-a)^{q-1}} \biggr\} \leq \frac{1}{2} \int_{a}^{b} f(x)\,dx. $$

Proof

An application of Theorem 2.1 with
$$p_{1}=p_{2}=p,\qquad q_{1}=q_{2}=q,\qquad \alpha=\frac{p+q}{2},\qquad \beta=0,\qquad v=u,\qquad g=f, $$
yields the desired result. □

Remark 1

Taking \(f=2h\) and \(q=p\) in Corollary 1, we obtain Lyapunov-type inequality (3) for the one-dimensional p-Laplacian equation.

Remark 2

Taking \(p_{1}=q_{1}=p\) and \(p_{2}=q_{2}=q\) in Theorem 2.1, we obtain Lyapunov-type inequality (6).

3 Generalized eigenvalues

The concept of generalized eigenvalues was introduced by Protter [30] for a system of linear elliptic operators. The first work dealing with generalized eigenvalues for p-Laplacian systems is due to Nápoli and Pinasco [6]. Inspired by that work, we present in this section some applications to generalized eigenvalues related to problem (S)-(DBC).

Let us consider the generalized eigenvalue problem
$$\begin{aligned} \mbox{(S)}_{\lambda,\mu}:\quad \textstyle\begin{cases} -( \vert u'(x) \vert ^{p_{1}-2}u'(x))'-( \vert u'(x) \vert ^{q_{1}-2}u'(x))'=\lambda \alpha w(x) \vert u(x) \vert ^{\alpha-2} \vert v(x) \vert ^{\beta}u(x),\\ -( \vert v'(x) \vert ^{p_{2}-2}v'(x))'-( \vert v'(x) \vert ^{q_{2}-2}v'(x))'=\mu \beta w(x) \vert u(x) \vert ^{\alpha} \vert v(x) \vert ^{\beta-2}v(x), \end{cases}\displaystyle \end{aligned}$$
on the interval \((a,b)\), with Dirichlet boundary conditions (DBC). If problem \(\mbox{(S)}_{\lambda,\mu}\)-(DBC) admits a nontrivial solution \((u,v)\in C^{2}[a,b]\times C^{2}[a,b]\), we say that \((\lambda,\mu)\) is a generalized eigenvalue of \(\mbox{(S)}_{\lambda,\mu}\)-(DBC). The set of generalized eigenvalues is called generalized spectrum, and it is denoted by σ.
We assume that
$$\alpha\geq 2,\qquad \beta\geq 2,\qquad p_{i}\geq 2,\qquad q_{i}\geq 2, \quad i=1,2, \qquad w\geq 0,\qquad w\in L^{1}(a,b), $$
and (1) is satisfied.

The following result provides lower bounds of the generalized eigenvalues of \(\mbox{(S)}_{\lambda,\mu}\)-(DBC).

Theorem 3.1

Let \((\lambda,\mu)\) be a generalized eigenvalue of \(\mathrm{(S)}_{\lambda,\mu}\)-(DBC). Then
$$ \mu\geq h(\lambda), $$
(16)
where \(h: (0,\infty)\to (0,\infty)\) is the function defined by
$$h(t)=\frac{1}{\beta} \biggl(\frac{C}{t^{\frac{2\alpha}{p_{1}+q_{1}}}\int_{a}^{b} w(x)\,dx} \biggr)^{\frac{p_{2}+q_{2}}{2\beta}},\quad t>0, $$
with
$$\begin{aligned} \alpha^{\frac{2\alpha}{p_{1}+q_{1}}} C =&2 \biggl[\min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}}, \frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{\frac{2\alpha}{p_{1}+q_{1}}} \\ &{}\times\biggl[\min \biggl\{ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}},\frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{\frac{2\beta}{p_{2}+q_{2}}}. \end{aligned}$$

Proof

Let \((\lambda,\mu)\) be a generalized eigenpair, and let \(u,v\) be the corresponding nontrivial solutions. By replacing in Lyapunov-type inequality (7) the functions
$$f(x)=\alpha \lambda w(x),\qquad g(x)=\beta \mu w(x), $$
and using condition (1), we obtain
$$2M\leq \alpha^{\frac{2\alpha}{p_{1}+q_{1}}} \lambda^{\frac{2\alpha}{p_{1}+q_{1}}}\beta^{\frac{2\beta}{p_{2}+q_{2}}} \mu^{\frac{2\beta}{p_{2}+q_{2}}} \int_{a}^{b} w(x)\,dx, $$
where
$$M= \biggl[\min \biggl\{ \frac{2^{p_{1}}}{(b-a)^{p_{1}-1}},\frac{2^{q_{1}}}{(b-a)^{q_{1}-1}} \biggr\} \biggr]^{\frac{2\alpha}{p_{1}+q_{1}}} \biggl[\min \biggl\{ \frac{2^{p_{2}}}{(b-a)^{p_{2}-1}},\frac{2^{q_{2}}}{(b-a)^{q_{2}-1}} \biggr\} \biggr]^{\frac{2\beta}{p_{2}+q_{2}}}. $$
Hence, we have
$$\mu^{\frac{2\beta}{p_{2}+q_{2}}}\geq \frac{C}{\lambda^{\frac{2\alpha}{p_{1}+q_{1}}}\beta^{\frac{2\beta}{p_{2}+q_{2}}}\int_{a}^{b} w(x)\,dx}, $$
which yields
$$\mu\geq \frac{1}{\beta} \biggl(\frac{C}{\lambda^{\frac{2\alpha}{p_{1}+q_{1}}}\int_{a}^{b} w(x)\,dx} \biggr)^{\frac{p_{2}+q_{2}}{2\beta}}, $$
and the proof is finished. □

As consequences of the previous obtained result, we deduce the following Protter’s type results for the generalized spectrum.

Corollary 2

There exists a constant \(c_{a,b}>0\) that depends on a and b such that no point of the generalized spectrum σ is contained in the ball \(B(0,c_{a,b})\), where
$$B(0,c_{a,b})= \bigl\{ x=(x_{1},x_{2})\in \mathbb{R}^{2}:\, \Vert x \Vert _{\infty}< c_{a,b} \bigr\} , $$
and \(\Vert \cdot \Vert _{\infty}\) is the Chebyshev norm in \(\mathbb{R}^{2}\).

Proof

Let \((\lambda,\mu)\in \sigma\). From (16), we obtain easily that
$$ \lambda^{\frac{2\alpha}{p_{1}+q_{1}}} \mu^{\frac{2\beta}{p_{2}+q_{2}}}\geq \frac{C}{\beta^{\frac{2\beta}{p_{2}+q_{2}}}\int_{a}^{b} w(x)\,dx}. $$
(17)
On the other hand, using condition (1), we have
$$\lambda^{\frac{2\alpha}{p_{1}+q_{1}}} \mu^{\frac{2\beta}{p_{2}+q_{2}}}\leq \bigl\Vert (\lambda,\mu) \bigr\Vert _{\infty}^{\frac{2\alpha}{p_{1}+q_{1}}+\frac{2\beta}{p_{2}+q_{2}}}= \bigl\Vert (\lambda,\mu) \bigr\Vert _{\infty}. $$
Therefore, we obtain
$$\bigl\Vert (\lambda,\mu) \bigr\Vert _{\infty}\geq c_{a,b}, $$
where
$$c_{a,b}=\frac{C}{\beta^{\frac{2\beta}{p_{2}+q_{2}}}\int_{a}^{b} w(x)\,dx}. $$
The proof is finished. □

Corollary 3

Let \((\lambda,\mu)\) be fixed. There exists an interval J of sufficiently small measure such that, if \(I=[a,b]\subset J\), then there are no nontrivial solutions of \(\mathrm{(S)}_{\lambda,\mu}\)-(DBC).

Proof

Suppose that \(\mbox{(S)}_{\lambda,\mu}\)-(DBC) admits a nontrivial solution. Since \(C\to +\infty\) as \(b-a\to 0^{+}\), where C is defined in Theorem 3.1, there exists \(\delta>0\) such that
$$b-a< \delta \quad \implies\quad \frac{C}{\int_{a}^{b} w(x)\,dx}>\lambda^{\frac{2\alpha}{p_{1}+q_{1}}} \mu^{\frac{2\beta}{p_{2}+q_{2}}} \beta^{\frac{2\beta}{p_{2}+q_{2}}}. $$
Let \(J=[a,a+\delta]\). Hence, if \(I\subset J\), we have
$$\frac{C}{\beta^{\frac{2\beta}{p_{2}+q_{2}}} \int_{a}^{b} w(x)\,dx}>\lambda^{\frac{2\alpha}{p_{1}+q_{1}}} \mu^{\frac{2\beta}{p_{2}+q_{2}}}, $$
which is a contradiction with (17). Therefore, if \(I\subset J\), there are no nontrivial solutions of \(\mbox{(S)}_{\lambda,\mu}\)-(DBC). □

4 Conclusion

Lyapunov-type inequalities for a system of differential equations involving one-dimensional \((p_{i},q_{i})\)-Laplacian operators (\(i=1,2\)) are derived. It was shown that such inequalities are very useful to obtain geometric characterizations of the generalized spectrum associated to the considered problem.

Declarations

Acknowledgements

The second author extends his appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, College of Science, King Saud University

References

  1. Lyapunov, AM: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 2, 203-407 (1907) Google Scholar
  2. Borg, G: On a Liapounoff criterion of stability. Am. J. Math. 71, 67-70 (1949) MathSciNetView ArticleMATHGoogle Scholar
  3. Elbert, A: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30, 158-180 (1979) Google Scholar
  4. Pinasco, JP: Lower bounds for eigenvalues of the one-dimensional p-Laplacian. Abstr. Appl. Anal. 2004, 147-153 (2004) MathSciNetView ArticleMATHGoogle Scholar
  5. De Nápoli, PL, Pinasco, JP: A Lyapunov inequality for monotone quasilinear operators. Differ. Integral Equ. 18(10), 1193-1200 (2005) MathSciNetMATHGoogle Scholar
  6. De Nápoli, PL, Pinasco, JP: Estimates for eigenvalues of quasilinear elliptic systems. J. Differ. Equ. 227, 102-115 (2006) MathSciNetView ArticleMATHGoogle Scholar
  7. Aktaş, MF, Çakmak, D, Tiryaki, A: Lyapunov-type inequality for quasilinear systems with anti-periodic boundary conditions. J. Math. Inequal. 8(2), 313-320 (2014) MathSciNetView ArticleMATHGoogle Scholar
  8. Çakmak, D: On Lyapunov-type inequality for a class of nonlinear systems. Math. Inequal. Appl. 16, 101-108 (2013) MathSciNetMATHGoogle Scholar
  9. Çakmak, D: Lyapunov-type inequalities for two classes of nonlinear systems with anti-periodic boundary conditions. Appl. Math. Comput. 223, 237-242 (2013) MathSciNetMATHGoogle Scholar
  10. Çakmak, D: On Lyapunov-type inequality for a class of quasilinear systems. Electron. J. Qual. Theory Differ. Equ. 2014, 9 (2014) MathSciNetView ArticleMATHGoogle Scholar
  11. Çakmak, D, Aktaş, MF, Tiryaki, A: Lyapunov-type inequalities for nonlinear systems involving the \((p_{1}, p_{2},\dots,p_{n})\)-Laplacian. Electron. J. Differ. Equ. 2013, 128 (2013) View ArticleMATHGoogle Scholar
  12. Çakmak, D, Tiryaki, A: Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the \((p_{1},p_{2},\ldots,p_{n})\)-Laplacian. J. Math. Anal. Appl. 369, 76-81 (2010) MathSciNetView ArticleMATHGoogle Scholar
  13. Çakmak, D, Tiryaki, A: On Lyapunov-type inequality for quasilinear systems. Appl. Math. Comput. 216, 3584-3591 (2010) MathSciNetMATHGoogle Scholar
  14. Tiryaki, A, Çakmak, D, Aktaş, MF: Lyapunov-type inequalities for a certain class of nonlinear systems. Comput. Math. Appl. 64(6), 1804-1811 (2012) MathSciNetView ArticleMATHGoogle Scholar
  15. Tiryaki, A, Çakmak, D, Aktaş, MF: Lyapunov-type inequalities for two classes of Dirichlet quasi-linear systems. Math. Inequal. Appl. 17(3), 843-863 (2014) MathSciNetMATHGoogle Scholar
  16. Yang, X, Kim, Y, Lo, K: Lyapunov-type inequality for a class of quasilinear systems. Math. Comput. Model. 53, 1162-1166 (2011) MathSciNetView ArticleMATHGoogle Scholar
  17. Canada, A, Montero, JA, Villegas, S: Lyapunov inequalities for partial differential equations. J. Funct. Anal. 237, 176-193 (2006) MathSciNetView ArticleMATHGoogle Scholar
  18. Cheng, SS: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25-41 (1991) MathSciNetMATHGoogle Scholar
  19. Dhar, S, Kong, Q: Lyapunov-type inequalities for higher order half-linear differential equations. Appl. Math. Comput. 273, 114-124 (2016) MathSciNetGoogle Scholar
  20. Jleli, M, Kirane, M, Samet, B: Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30-39 (2017) MathSciNetView ArticleMATHGoogle Scholar
  21. Jleli, M, Samet, B: Lyapunov-type inequalities for fractional boundary-value problems. Electron. J. Differ. Equ. 2015, 88 (2015) MathSciNetView ArticleMATHGoogle Scholar
  22. Lee, C, Yeh, C, Hong, C, Agarwal, RP: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17, 847-853 (2004) MathSciNetView ArticleMATHGoogle Scholar
  23. De Nápoli, PL, Pinasco, JP: Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 15(6), 1995-2018 (2016) MathSciNetView ArticleMATHGoogle Scholar
  24. Pachpatte, BG: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195, 527-536 (1995) MathSciNetView ArticleMATHGoogle Scholar
  25. Parhi, N, Panigrahi, S: On Liapunov-type inequality for third-order differential equations. J. Math. Anal. Appl. 233(2), 445-460 (1999) MathSciNetView ArticleMATHGoogle Scholar
  26. Sim, I, Lee, YH: Lyapunov inequalities for one-dimensional p-Laplacian problems with a singular weight function. J. Inequal. Appl. 2010, Article ID 865096 (2010) MathSciNetMATHGoogle Scholar
  27. Tang, X, Zhang, M: Lyapunov inequalities and stability for linear Hamiltonian systems. J. Differ. Equ. 252, 358-381 (2012) MathSciNetView ArticleMATHGoogle Scholar
  28. Wang, Y: Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions. Appl. Math. Lett. 25, 2375-2380 (2012) MathSciNetView ArticleMATHGoogle Scholar
  29. Yang, X: On inequalities of Lyapunov type. Appl. Math. Comput. 134, 293-300 (2003) MathSciNetMATHGoogle Scholar
  30. Protter, M: The generalized spectrum of second order elliptic systems. Rocky Mt. J. Math. 9(3), 503-518 (1979) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© The Author(s) 2017