Skip to main content

A new Z-eigenvalue localization set for tensors

Abstract

A new Z-eigenvalue localization set for tensors is given and proved to be tighter than those in the work of Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Based on this set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

1 Introduction

For a positive integer n, \(n\geq2\), N denotes the set \(\{1,2,\ldots ,n\}\). \(\mathbb{C}\) (\(\mathbb{R}\)) denotes the set of all complex (real) numbers. We call \(\mathcal{A}=(a_{i_{1}i_{2}\cdots i_{m}})\) a real tensor of order m dimension n, denoted by \(\mathbb{R}^{[m,n]}\), if

$$a_{i_{1}i_{2}\cdots i_{m}}\in{\mathbb{R}}, $$

where \(i_{j}\in{N}\) for \(j=1,2,\ldots,m\). \(\mathcal{A}\) is called nonnegative if \(a_{i_{1}i_{2}\cdots i_{m}}\geq0\). \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in\mathbb{R}^{[m,n]}\) is called symmetric [2] if

$$ a_{i_{1}\cdots i_{m}}=a_{\pi(i_{1}\cdots i_{m})},\quad \forall\pi\in\Pi _{m}, $$

where \(\Pi_{m}\) is the permutation group of m indices. \(\mathcal{A}=(a_{i_{1}i_{2}\cdots i_{m}})\in\mathbb{R}^{[m,n]}\) is called weakly symmetric [3] if the associated homogeneous polynomial

$$\mathcal{A}x^{m}=\sum_{i_{1},i_{2},\ldots,i_{m}\in N}a_{i_{1}i_{2}\cdots i_{m}}x_{i_{1}}x_{i_{2}} \cdots x_{i_{m}} $$

satisfies \(\nabla\mathcal{A}x^{m}=m\mathcal{A}x^{m-1}\). It is shown in [3] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in general.

Given a tensor \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in\mathbb {R}^{[m,n]}\), if there are \(\lambda\in\mathbb{C}\) and \(x=(x_{1},x_{2}\cdots,x_{n})^{T}\in\mathbb{C}^{n}\backslash\{0\}\) such that

$$\mathcal{A}x^{m-1}=\lambda x \quad \text{and}\quad x^{T}x=1, $$

then λ is called an E-eigenvalue of \(\mathcal{A}\) and x an E-eigenvector of \(\mathcal{A}\) associated with λ, where \(\mathcal{A}x^{m-1}\) is an n dimension vector whose ith component is

$$\bigl(\mathcal {A}x^{m-1}\bigr)_{i}=\sum _{i_{2},\ldots,i_{m}\in N} a_{ii_{2}\cdots i_{m}}x_{i_{2}}\cdots x_{i_{m}}. $$

If λ and x are all real, then λ is called a Z-eigenvalue of \(\mathcal {A}\) and x a Z-eigenvector of \(\mathcal{A}\) associated with λ; for details, see [2, 4].

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\). We define the Z-spectrum of \(\mathcal{A}\), denoted \(\sigma(\mathcal{A})\) to be the set of all Z-eigenvalues of \(\mathcal{A}\). Assume \(\sigma(\mathcal{A})\neq0\), then the Z-spectral radius [3] of \(\mathcal{A}\), denoted \(\varrho (\mathcal{A})\), is defined as

$$\varrho(\mathcal{A}):=\sup\bigl\{ |\lambda|:\lambda\in\sigma(\mathcal{A})\bigr\} . $$

Recently, much literature has focused on locating all Z-eigenvalues of tensors and bounding the Z-spectral radius of nonnegative tensors in [1, 5–10]. It is well known that one can use eigenvalue inclusion sets to obtain the lower and upper bounds of the spectral radius of nonnegative tensors; for details, see [1, 11–14]. Therefore, the main aim of this paper is to give a tighter Z-eigenvalue inclusion set for tensors, and use it to obtain a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors.

In 2017, Wang et al. [1] established the following Gers̆gorin-type Z-eigenvalue inclusion theorem for tensors.

Theorem 1

[1], Theorem 3.1

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\). Then

$$ \sigma(\mathcal{A})\subseteq\mathcal{K}(\mathcal{A})=\bigcup _{i\in {N}}\mathcal{K}_{i}(\mathcal{A}), $$

where

$$ \mathcal{K}_{i}(\mathcal{A})=\bigl\{ z\in{\mathbb{C}}:|z|\leq R_{i}(\mathcal {A})\bigr\} ,\qquad R_{i}(\mathcal{A})=\sum _{i_{2},\ldots, i_{m}\in N}|a_{ii_{2}\cdots i_{m}}|. $$

To get a tighter Z-eigenvalue inclusion set than \(\mathcal{K}(\mathcal{A})\), Wang et al. [1] gave the following Brauer-type Z-eigenvalue localization set for tensors.

Theorem 2

[1], Theorem 3.2

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\). Then

$$ \sigma(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A}) =\bigcup _{i\in N}\bigcap_{j\in N,j\neq i} \mathcal{L}_{i,j}(\mathcal{A}), $$

where

$$\mathcal{L}_{i,j}(\mathcal{A})= \bigl\{ z\in{\mathbb{C}}: \bigl(|z|- \bigl(R_{i}(\mathcal{A})-|a_{ij\cdots j}|\bigr) \bigr)|z| \leq|a_{ij\cdots j}|R_{j}(\mathcal{A}) \bigr\} . $$

In this paper, we continue this research on the Z-eigenvalue localization problem for tensors and its applications. We give a new Z-eigenvalue inclusion set for tensors and prove that the new set is tighter than those in Theorem 1 and Theorem 2. As an application of this set, we obtain a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors, which is sharper than some existing upper bounds.

2 Main results

In this section, we give a new Z-eigenvalue localization set for tensors, and establish the comparison between this set with those in Theorem 1 and Theorem 2. For simplification, we denote

$$\begin{aligned}& \Delta_{j}=\bigl\{ (i_{2},i_{3},\ldots, i_{m}): i_{k}=j\mbox{ for some }k\in\{2,\ldots,m\}, \mbox{where }j,i_{2},\ldots, i_{m}\in N\bigr\} , \\& \overline{\Delta}_{j}=\bigl\{ (i_{2},i_{3}, \ldots, i_{m}): i_{k}\neq j\mbox{ for any }k\in\{ 2,\ldots,m \}, \mbox{where }j,i_{2},\ldots, i_{m}\in N\bigr\} . \end{aligned}$$

For \(\forall i,j\in N, j\neq i\), let

$$ r_{i}^{\Delta_{j}}(\mathcal{A})=\sum_{(i_{2},\ldots,i_{m})\in\Delta _{j}}|a_{ii_{2}\cdots i_{m}}|, \qquad r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})=\sum _{(i_{2},\ldots,i_{m})\in \overline{\Delta}_{j}}|a_{ii_{2}\cdots i_{m}}|. $$

Then \(R_{i}(\mathcal{A})=r_{i}^{\Delta_{j}}(\mathcal{A})+r_{i}^{\overline{\Delta }_{j}}(\mathcal{A})\).

Theorem 3

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\). Then

$$ \sigma(\mathcal{A})\subseteq\Psi(\mathcal{A})=\bigcup _{i\in N}\bigcap_{j\in N, j\neq i} \Psi_{i,j}(\mathcal{A}), $$

where

$$ \Psi_{i,j}(\mathcal{A})= \bigl\{ z\in\mathbb{C}: \bigl(|z|-r_{i}^{\overline {\Delta}_{j}}( \mathcal{A}) \bigr)|z|\leq r_{i}^{\Delta_{j}}(\mathcal {A})R_{j}(\mathcal{A}) \bigr\} . $$

Proof

Let λ be a Z-eigenvalue of \(\mathcal{A}\) with corresponding Z-eigenvector \(x=(x_{1},\ldots,x_{n})^{T}\in{\mathbb{C}}^{n}\backslash \{0\}\), i.e.,

$$ \mathcal{A}x^{m-1}=\lambda x,\quad \text{and}\quad \|x \|_{2}=1. $$
(1)

Assume \(|x_{t}|=\max_{i \in N}|x_{i}|\), then \(0<|x_{t}|^{m-1}\leq|x_{t}|\leq1\). For \(\forall j\in N\), \(j\neq t\), from (1), we have

$$ \lambda x_{t}=\sum_{(i_{2},\ldots, i_{m})\in\Delta_{j}}a_{ti_{2}\cdots i_{m}}x_{i_{2}} \cdots x_{i_{m}} +\sum_{(i_{2},\ldots, i_{m})\in\overline{\Delta}_{j}}a_{ti_{2}\cdots i_{m}}x_{i_{2}} \cdots x_{i_{m}}. $$

Taking the modulus in the above equation and using the triangle inequality give

$$\begin{aligned} |\lambda||x_{t}| \leq& \sum_{(i_{2},\ldots, i_{m})\in\Delta _{j}}|a_{ti_{2}\cdots i_{m}}||x_{i_{2}}| \cdots|x_{i_{m}}| +\sum_{(i_{2},\ldots, i_{m})\in\overline{\Delta}_{j}}|a_{ti_{2}\cdots i_{m}}||x_{i_{2}}| \cdots|x_{i_{m}}| \\ \leq& \sum_{(i_{2},\ldots, i_{m})\in\Delta_{j}}|a_{ti_{2}\cdots i_{m}}||x_{j}| +\sum_{(i_{2},\ldots, i_{m})\in\overline{\Delta}_{j}}|a_{ti_{2}\cdots i_{m}}||x_{t}| \\ =&r_{t}^{\Delta_{j}}(\mathcal{A})|x_{j}|+r_{t}^{\overline{\Delta}_{j}}( \mathcal{A})|x_{t}|, \end{aligned}$$

i.e.,

$$ \bigl(|\lambda|-r_{t}^{\overline{\Delta}_{j}}(\mathcal{A}) \bigr)|x_{t}|\leq r_{t}^{\Delta _{j}}(\mathcal{A})|x_{j}|. $$
(2)

If \(|x_{j}|=0\), by \(|x_{t}|>0\), we have \(|\lambda|-r_{t}^{\overline{\Delta}_{j}}(\mathcal{A})\leq0\). Then

$$ \bigl(|\lambda|-r_{t}^{\overline{\Delta}_{j}}(\mathcal{A})\bigr)|\lambda|\leq0 \leq r_{t}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal{A}). $$

Obviously, \(\lambda\in\Psi_{t,j}(\mathcal{A})\). Otherwise, \(|x_{j}|>0\). From (1), we have

$$ |\lambda||x_{j}|\leq\sum_{i_{2},\ldots, i_{m}\in N}|a_{ji_{2}\cdots i_{m}}||x_{i_{2}}| \cdots|x_{i_{m}}| \leq\sum_{i_{2},\ldots, i_{m}\in N}|a_{ji_{2}\cdots i_{m}}||x_{t}|^{m-1} \leq R_{j}(\mathcal{A})|x_{t}|. $$
(3)

Multiplying (2) with (3) and noting that \(|x_{t}||x_{j}|>0\), we have

$$ \bigl(|\lambda|-r_{t}^{\overline{\Delta}_{j}}(\mathcal{A})\bigr)|\lambda|\leq r_{t}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal{A}), $$

which implies that \(\lambda\in\Psi_{t,j}(\mathcal{A})\). From the arbitrariness of j, we have \(\lambda\in\bigcap_{j\in N, j\neq t}\Psi_{t,j}(\mathcal{A})\). Furthermore, we have \(\lambda\in\bigcup_{i\in N}\bigcap_{j\in N, j\neq i}\Psi _{i,j}(\mathcal{A})\). □

Next, a comparison theorem is given for Theorem 1, Theorem 2 and Theorem 3.

Theorem 4

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\). Then

$$ \Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\subseteq\mathcal {K}( \mathcal{A}). $$

Proof

By Corollary 3.1 in [1], \(\mathcal{L}(\mathcal{A})\subseteq \mathcal{K}(\mathcal{A})\) holds. Here, we only prove \(\Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\). Let \(z\in\Psi(\mathcal{A})\). Then there exists \(i\in N\), such that \(z\in\Psi_{i,j}(\mathcal{A})\), \(\forall j\in N\), \(j\neq i\), that is,

$$ \bigl(|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})\bigr)|z|\leq r_{i}^{\Delta _{j}}(\mathcal{A})R_{j}(\mathcal{A}), \quad \forall j\in N, j\neq i. $$
(4)

Next, we divide our subject in two cases to prove \(\Psi(\mathcal {A})\subseteq\mathcal{L}(\mathcal{A})\).

Case I: If \(r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal{A})=0\), then we have

$$ \bigl(|z|-\bigl(R_{i}(\mathcal{A})-|a_{ij\cdots j}|\bigr) \bigr)|z| \leq \bigl(|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})\bigr)|z| \leq r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal{A})=0 \leq|a_{ij\cdots j}|R_{j}(\mathcal{A}), $$

which implies that \(z\in\bigcap_{j\in N, j\neq i}\mathcal{L}_{i,j}(\mathcal{A})\subseteq \mathcal{L}(\mathcal{A})\) from the arbitrariness of j, consequently, \(\Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\).

Case II: If \(r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal{A})>0\), then dividing both sides by \(r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}(\mathcal {A})\) in (4), we have

$$ \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})}{r_{i}^{\Delta _{j}}(\mathcal{A})} \frac{|z|}{R_{j}(\mathcal{A})}\leq1, $$
(5)

which implies

$$ \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})}{r_{i}^{\Delta _{j}}(\mathcal{A})}\leq1, $$
(6)

or

$$ \frac{|z|}{R_{j}(\mathcal{A})}\leq1. $$
(7)

Let \(a=|z|\), \(b=r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})\), \(c=r_{i}^{\Delta _{j}}(\mathcal{A})-|a_{ij\cdots j}|\) and \(d=|a_{ij\cdots j}|\). When (6) holds and \(d=|a_{ij\cdots j}|>0\), from Lemma 2.2 in [11], we have

$$ \frac{|z|-(R_{i}(\mathcal{A})-|a_{ij\cdots j}|)}{|a_{ij\cdots j}|}=\frac {a-(b+c)}{d} \leq\frac{a-b}{c+d}= \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal {A})}{r_{i}^{\Delta_{j}}(\mathcal{A})}. $$
(8)

Furthermore, from (5) and (8), we have

$$ \frac{|z|-(R_{i}(\mathcal{A})-|a_{ij\cdots j}|)}{|a_{ij\cdots j}|}\frac {|z|}{R_{j}(\mathcal{A})} \leq\frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})}{r_{i}^{\Delta _{j}}(\mathcal{A})}\frac{|z|}{R_{j}(\mathcal{A})}\leq1, $$

equivalently,

$$ \bigl(|z|-\bigl(R_{i}(\mathcal{A})-|a_{ij\cdots j}|\bigr) \bigr)|z| \leq|a_{ij\cdots j}|R_{j}(\mathcal{A}), $$

which implies that \(z\in\bigcap_{j\in N, j\neq i}\mathcal{L}_{i,j}(\mathcal{A})\subseteq \mathcal{L}(\mathcal{A})\) from the arbitrariness of j, consequently, \(\Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\). When (6) holds and \(d=|a_{ij\cdots j}|=0\), we have

$$ |z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})-r_{i}^{\Delta_{j}}( \mathcal {A})\leq0,\quad \textit{i.e.},\quad |z|-\bigl(R_{i}( \mathcal{A})-|a_{ij\cdots j}|\bigr)\leq0, $$

and furthermore

$$ \bigl(|z|-\bigl(R_{i}(\mathcal{A})-|a_{ij\cdots j}|\bigr) \bigr)|z| \leq0=|a_{ij\cdots j}|R_{j}(\mathcal{A}). $$

This also implies \(\Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\).

On the other hand, when (7) holds, we only prove \(\Psi (\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\) under the case that

$$ \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})}{r_{i}^{\Delta _{j}}(\mathcal{A})}>1. $$
(9)

From (9), we have \(\frac{a}{b+c+d}=\frac{|z|}{R_{i}(\mathcal{A})}>1\). When (7) holds and \(|a_{ji\cdots i}|>0\), by Lemma 2.3 in [11], we have

$$ \frac{|z|}{R_{i}(\mathcal{A})}=\frac{a}{b+c+d} \leq\frac{a-b}{c+d}= \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal {A})}{r_{i}^{\Delta_{j}}(\mathcal{A})}. $$
(10)

By (7), Lemma 2.2 in [11] and similar to the proof of (8), we have

$$ \frac{|z|-(R_{j}(\mathcal{A})-|a_{ji\cdots i}|)}{|a_{ji\cdots i}|} \leq \frac{|z|}{R_{j}(\mathcal{A})}. $$
(11)

Multiplying (10) and (11), we have

$$ \frac{|z|-(R_{j}(\mathcal{A})-|a_{ji\cdots i}|)}{|a_{ji\cdots i}|}\frac {|z|}{R_{i}(\mathcal{A})} \leq \frac{|z|-r_{i}^{\overline{\Delta}_{j}}(\mathcal{A})}{r_{i}^{\Delta _{j}}(\mathcal{A})}\frac{|z|}{R_{j}(\mathcal{A})} \leq1; $$

equivalently,

$$ \bigl(|z|-\bigl(R_{j}(\mathcal{A})-|a_{ji\cdots i}|\bigr) \bigr)|z| \leq|a_{ji\cdots i}|R_{i}(\mathcal{A}). $$

This implies \(z\in\bigcap_{i\in N, i\neq j}\mathcal{L}_{j,i}(\mathcal {A})\subseteq\mathcal{L}(\mathcal{A})\) and \(\Psi(\mathcal{A})\subseteq \mathcal{L}(\mathcal{A})\) from the arbitrariness of i. When (7) holds and \(|a_{ji\cdots i}|=0\), we can obtain

$$ |z|-R_{j}(\mathcal{A})\leq0,\quad \textit{i.e.},\quad |z|- \bigl(R_{j}(\mathcal{A})-|a_{ji\cdots i}|\bigr)\leq0 $$

and

$$ \bigl(|z|-\bigl(R_{j}(\mathcal{A})-|a_{ji\cdots i}|\bigr) \bigr)|z| \leq0=|a_{ji\cdots i}|R_{i}(\mathcal{A}). $$

This also implies \(\Psi(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A})\). The conclusion follows from Case I and Case II. □

Remark 1

Theorem 4 shows that the set \(\Psi(\mathcal{A})\) in Theorem 3 is tighter than \(\mathcal{K}(\mathcal{A})\) in Theorem 1 and \(\mathcal{L}(\mathcal{A})\) in Theorem 2, that is, \(\Psi(\mathcal{A})\) can capture all Z-eigenvalues of \(\mathcal{A}\) more precisely than \(\mathcal{K}(\mathcal{A})\) and \(\mathcal{L}(\mathcal{A})\).

Now, we give an example to show that \(\Psi(\mathcal{A})\) is tighter than \(\mathcal{K}(\mathcal{A})\) and \(\mathcal{L}(\mathcal{A})\).

Example 1

Let \(\mathcal{A}=(a_{ijkl})\in{\mathbb{R}}^{[4,2]}\) be a symmetric tensor defined by

$$a_{1222}=1,\qquad a_{2222}=2, \quad \mbox{and}\quad a_{ijkl}=0\quad \mbox{elsewhere}. $$

By computation, we see that all the Z-eigenvalues of \(\mathcal{A}\) are −0.5000, 0 and 2.7000. By Theorem 1, we have

$$\begin{aligned} \mathcal{K}(\mathcal{A}) =&\mathcal{K}_{1}(\mathcal{A})\cup\mathcal {K}_{2}(\mathcal{A}) =\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq1 \bigr\} \cup\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq5\bigr\} \\ =&\bigl\{ z\in{ \mathbb{C}}: \vert z \vert \leq5\bigr\} . \end{aligned}$$

By Theorem 2, we have

$$\begin{aligned} \mathcal{L}(\mathcal{A}) =&\mathcal{L}_{1,2}(\mathcal{A})\cup\mathcal {L}_{2,1}(\mathcal{A}) =\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq2.2361\bigr\} \cup\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq 5\bigr\} \\ =& \bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq5\bigr\} . \end{aligned}$$

By Theorem 3, we have

$$\begin{aligned} \Psi(\mathcal{A}) =&\Psi_{1,2}(\mathcal{A})\cup\Psi_{2,1}( \mathcal{A}) =\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq2.2361\bigr\} \cup \bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq 3\bigr\} \\ =&\bigl\{ z\in{\mathbb{C}}: \vert z \vert \leq3\bigr\} . \end{aligned}$$

The Z-eigenvalue inclusion sets \(\mathcal{K}(\mathcal{A})\), \(\mathcal {L}(\mathcal{A})\), \(\Psi(\mathcal{A})\) and the exact Z-eigenvalues are drawn in Figure 1, where \(\mathcal{K}(\mathcal{A})\) and \(\mathcal{L}(\mathcal{A})\) are represented by blue dashed boundary, \(\Psi(\mathcal{A})\) is represented by red solid boundary and the exact eigenvalues are plotted by ‘+’, respectively. It is easy to see \(\sigma(\mathcal{A})\subseteq\Psi(\mathcal {A})\subset\mathcal{L}(\mathcal{A})\subseteq\mathcal{K}(\mathcal{A})\), that is, \(\Psi(\mathcal{A})\) can capture all Z-eigenvalues of \(\mathcal{A}\) more precisely than \(\mathcal{L}(\mathcal{A})\) and \(\mathcal{K}(\mathcal{A})\).

Figure 1
figure 1

Comparisons of \(\pmb{\mathcal{K}(\mathcal{A})}\) , \(\pmb{\mathcal {L}(\mathcal{A})}\) and \(\pmb{\Psi(\mathcal{A})}\) .

3 A new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the results in Section 2, we in this section give a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors.

Theorem 5

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\) be a weakly symmetric nonnegative tensor. Then

$$ \varrho(\mathcal{A})\leq\max_{i\in N}\min_{j\in N, j\neq i} \Phi _{i,j}(\mathcal{A}), $$

where

$$ \Phi_{i,j}(\mathcal{A})=\frac{1}{2} \Bigl\{ r_{i}^{\overline{\Delta}_{j}}( \mathcal{A})+\sqrt{\bigl(r_{i}^{\overline{\Delta }_{j}}(\mathcal{A}) \bigr)^{2}+4r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}( \mathcal{A})} \Bigr\} . $$

Proof

From Lemma 4.4 in [1], we know that \(\varrho(\mathcal{A})\) is the largest Z-eigenvalue of \(\mathcal{A}\). It follows from Theorem 3 that there exists \(i\in N\) such that

$$ \bigl(\varrho(\mathcal{A})-r_{i}^{\overline{\Delta}_{j}}( \mathcal{A}) \bigr)\varrho(\mathcal{A})\leq r_{i}^{\Delta_{j}}( \mathcal{A})R_{j}(\mathcal{A}),\quad \forall j\in N, j\neq i. $$
(12)

Solving \(\varrho(\mathcal{A})\) in (12) gives

$$ \varrho(\mathcal{A})\leq\frac{1}{2} \Bigl\{ r_{i}^{\overline{\Delta}_{j}}( \mathcal{A})+\sqrt{\bigl(r_{i}^{\overline{\Delta }_{j}}(\mathcal{A}) \bigr)^{2}+4r_{i}^{\Delta_{j}}(\mathcal{A})R_{j}( \mathcal{A})} \Bigr\} =\Phi_{i,j}(\mathcal{A}). $$

From the arbitrariness of j, we have \(\varrho(\mathcal{A})\leq\min_{j\in N, j\neq i}\Phi_{i,j}(\mathcal{A})\). Furthermore, \(\varrho(\mathcal{A})\leq\max_{i\in N}\min_{j\in N, j\neq i}\Phi _{i,j}(\mathcal{A})\). □

By Theorem 4, Theorem 4.5 and Corollary 4.1 in [1], the following comparison theorem can be derived easily.

Theorem 6

Let \(\mathcal{A}=(a_{i_{1}\cdots i_{m}})\in{\mathbb{R}}^{[m,n]}\) be a weakly symmetric nonnegative tensor. Then the upper bound in Theorem  5 is sharper than those in Theorem 4.5 of [1] and Corollary 4.5 of [5], that is,

$$\begin{aligned} \varrho(\mathcal{A}) \leq&\max_{i\in N}\min_{j\in N, j\neq i} \Phi _{i,j}(\mathcal{A}) \\ \leq&\max_{i\in N}\min_{j\in N, j\neq i}\frac{1}{2} \bigl\{ R_{i}(\mathcal{A})-a_{ij\cdots j}+\sqrt{ \bigl(R_{i}(\mathcal{A})-a_{ij\cdots j}\bigr)^{2}+4a_{ij\cdots j}R_{j}( \mathcal{A})} \bigr\} \\ \leq&\max_{i\in N}R_{i}(\mathcal{A}). \end{aligned}$$

Finally, we show that the upper bound in Theorem 5 is sharper than those in [1, 5–8, 10] by the following example.

Example 2

Let \(\mathcal{A}=(a_{ijk})\in{\mathbb{R}}^{[3,3]}\) with the entries defined as follows:

$$\begin{aligned}& \mathcal{A}(:,:,1)=\left ( \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{}} 3&3&0\\ 3&2&2.5\\ 0.5&2.5&0 \end{array}\displaystyle \right ),\qquad \mathcal{A}(:,:,2)=\left ( \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{}} 3&2&2\\ 2&0&3\\ 2.5&3&1 \end{array}\displaystyle \right ), \\& \mathcal{A}(:,:,3)=\left ( \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{}} 1&3&0\\ 2.5&3&1\\ 0&1&0 \end{array}\displaystyle \right ). \end{aligned}$$

It is not difficult to verify that \(\mathcal{A}\) is a weakly symmetric nonnegative tensor. By both Corollary 4.5 of [5] and Theorem 3.3 of [6], we have

$$\varrho(\mathcal{A})\leq19. $$

By Theorem 3.5 of [7], we have

$$\varrho(\mathcal{A})\leq18.6788. $$

By Theorem 4.6 of [1], we have

$$\varrho(\mathcal{A})\leq18.6603. $$

By both Theorem 4.5 of [1] and Theorem 6 of [8], we have

$$\varrho(\mathcal{A})\leq18.5656. $$

By Theorem 4.7 of [1], we have

$$\varrho(\mathcal{A})\leq18.3417. $$

By Theorem 2.9 of [10], we have

$$\varrho(\mathcal{A})\leq17.2063. $$

By Theorem 5, we obtain

$$\varrho(\mathcal{A})\leq15.2580, $$

which shows that the upper bound in Theorem 5 is sharper.

4 Conclusions

In this paper, we present a new Z-eigenvalue localization set \(\Psi (\mathcal{A})\) and prove that this set is tighter than those in [1]. As an application, we obtain a new upper bound \(\max_{i\in N}\min_{j\in N, j\neq i}\Phi_{i,j}(\mathcal{A})\) for the Z-spectral radius of weakly symmetric nonnegative tensors, and we show that this bound is sharper than those in [1, 5–8, 10] in some cases by a numerical example.

References

  1. Wang, G, Zhou, GL, Caccetta, L: Z-Eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst., Ser. B 22(1), 187-198 (2017)

    Article  MathSciNet  Google Scholar 

  2. Qi, LQ: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, KC, Pearson, K, Zhang, T: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166-4182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), pp. 129-132 (2005)

    Google Scholar 

  5. Song, YS, Qi, LQ: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581-1595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, W, Liu, DD, Vong, SW: Z-Eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182-199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, J: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20(7), 1290-1301 (2016)

    MathSciNet  MATH  Google Scholar 

  8. He, J, Liu, YM, Ke, H, Tian, JK, Li, X: Bounds for the Z-spectral radius of nonnegative tensors. SpringerPlus 5, 1727 (2016)

    Article  Google Scholar 

  9. He, J, Huang, TZ: Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110-114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, QL, Li, YT: Bounds for the Z-eigenpair of general nonnegative tensors. Open Math. 14, 181-194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, CQ, Li, YT: An eigenvalue localization set for tensor with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64(4), 587-601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, CQ, Li, YT, Kong, X: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, CQ, Zhou, JJ, Li, YT: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64(4), 727-736 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, CQ, Chen, Z, Li, YT: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36-53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11501141), the Foundation of Guizhou Science and Technology Department (Grant No. [2015]2073) and the Natural Science Programs of Education Department of Guizhou Province (Grant No. [2016]066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Zhao.

Additional information

Competing interests

The author declares that they have no competing interests.

Author’s contributions

The author read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. A new Z-eigenvalue localization set for tensors. J Inequal Appl 2017, 85 (2017). https://doi.org/10.1186/s13660-017-1363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1363-6

MSC

Keywords