Skip to main content

Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex

Abstract

In the article, the authors introduce a new notion, ‘α-preinvex function’, establish an integral identity for the newly introduced function, and find some Hermite-Hadamard type integral inequalities for a function of which the power of the absolute value of the first derivative is α-preinvex.

MSC: 26D15, 26A51, 26B12, 41A55.

1 Introduction

Let us recall some definitions of various convex functions.

Definition 1 A function f:IR=(,)R is said to be convex if

f ( λ x + ( 1 λ ) y ) λf(x)+(1λ)f(y)
(1)

holds for all x,yI and λ[0,1].

Definition 2 ([1])

For f:[0,b]R and m(0,1], if

f ( t x + m ( 1 t ) y ) tf(x)+m(1t)f(y)
(2)

is valid for all x,y[0,b] and t[0,1], then we say that f(x) is an m-convex function on [0,b].

Definition 3 ([2])

For f:[0,b]R and (α,m)(0,1]×(0,1], if

f ( t x + m ( 1 t ) y ) t α f(x)+m ( 1 t α ) f(y)
(3)

is valid for all x,y[0,b] and t[0,1], then we say that f(x) is an (α,m)-convex function on [0,b].

Definition 4 ([35])

A set S R n is said to be invex with respect to the map η:S×S R n if for every x,yS and t[0,1]

y+tη(x,y)S.
(4)

Definition 5 ([6])

Let S R n be an invex set with respect to η:S×S R n . For every x,yS, the η-path P x v joining the points x and v=x+η(y,x) is defined by

P x v = { z z = x + t η ( y , x ) , t [ 0 , 1 ] } .
(5)

Definition 6 ([4])

Let S R n be an invex set with respect to η:S×S R n . A function f:SR is said to be preinvex with respect to η, if for every x,yS and t[0,1],

f ( y + t η ( x , y ) ) tf(x)+(1t)f(y).
(6)

Let us reformulate some inequalities of Hermite-Hadamard type for the above mentioned convex functions.

Theorem 1 ([[7], Theorem 2.2])

Let f: I RR be a differentiable mapping and a,b I with a<b. If | f | is convex on [a,b], then

| f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 8 ( | f ( a ) | + | f ( b ) | ) .
(7)

Theorem 2 ([8, 9])

Let f: R 0 =[0,)R be m-convex and m(0,1]. If fL([a,b]) for 0a<b<, then

1 b a a b f(x)dxmin { f ( a ) + m f ( b / m ) 2 , m f ( a / m ) + f ( b ) 2 } .
(8)

Theorem 3 ([[10], Theorem 3.1])

Let I R 0 be an open real interval and let f:IR be a differentiable function on I such that f L([a,b]) for 0a<b<. If | f | q is (α,m)-convex on [a,b] for some given numbers m,α(0,1] and q1, then

| f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 2 ( 1 2 ) 1 1 / q min { [ v 1 | f ( a ) | q + v 2 m | f ( b m ) | q ] 1 / q , [ v 2 m | f ( a m ) | q + v 1 | f ( b ) | q ] 1 / q } ,

where

v 1 = 1 ( α + 1 ) ( α + 2 ) ( α + 1 2 α ) and v 2 = 1 ( α + 1 ) ( α + 2 ) ( α 2 + α + 2 2 1 2 α ) .

Theorem 4 ([[4], Theorem 2.1])

Let AR be an open invex subset with respect to θ:A×AR and let f:AR be a differentiable function. If | f | is preinvex on A, then for every a,bA with θ(a,b)0 we have

| f ( b ) + f ( b + θ ( a , b ) ) 2 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 [ | f ( a ) | + | f ( b ) | ] .
(9)

For more information on Hermite-Hadamard type inequalities for various convex functions, please refer to recently published articles [1121] and closely related references therein.

In this article, we will introduce a new notion ‘α-preinvex function’, establish an integral identity for such a kind of functions, and find some Hermite-Hadamard type integral inequalities for a function that the power of the absolute value of its first derivative is α-preinvex.

2 A new definition and a lemma

The so-called ‘α-preinvex function’ may be introduced as follows.

Definition 7 Let S R n be an invex set with respect to η:S×S R n . A function f:SR is said to be α-preinvex with respect to η for α(0,1], if for every x,yS and t[0,1],

f ( y + t η ( x , y ) ) t α f(x)+ ( 1 t α ) f(y).
(10)

Remark 1 If α=1 and f(x) is an α-preinvex function, then f(x) is a preinvex function.

For establishing our new integral inequalities of Hermite-Hadamard type for α-preinvex functions, we need the following integral identity.

Lemma 1 Let AR be an open invex subset with respect to θ:A×AR and let a,bA with θ(a,b)0. If f:AR is a differentiable function and f is integrable on the θ-path P b c : c=b+θ(a,b), then

1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x = θ ( a , b ) 4 0 1 ( 1 2 t ) [ f ( b + 1 t 2 θ ( a , b ) ) + f ( b + 2 t 2 θ ( a , b ) ) ] d t .

Proof Since a,bA and A is an invex set with respect to θ, for every t[0,1], we have b+tθ(a,b)A. Integrating by parts gives

0 1 ( 1 2 t ) [ f ( b + 1 t 2 θ ( a , b ) ) + f ( b + 2 t 2 θ ( a , b ) ) ] d t = 2 θ ( a , b ) [ ( 1 2 t ) f ( b + 1 t 2 θ ( a , b ) ) | 0 1 + 0 1 f ( b + 1 t 2 θ ( a , b ) ) d t + ( 1 2 t ) f ( b + 2 t 2 θ ( a , b ) ) | 0 1 + 0 1 f ( b + 2 t 2 θ ( a , b ) ) d t ] = 2 θ ( a , b ) [ 1 2 f ( b ) + 1 2 f ( 2 b + θ ( a , b ) 2 ) 0 1 f ( b + 1 t 2 θ ( a , b ) ) d t ] + 2 θ ( a , b ) [ 1 2 f ( 2 b + θ ( a , b ) 2 ) + 1 2 f ( b + θ ( a , b ) ) 0 1 f ( b + 2 t 2 θ ( a , b ) ) d t ] = 2 θ ( a , b ) [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 4 θ 2 ( a , b ) b b + θ ( a , b ) f ( x ) d x .

The proof of Lemma 1 is completed. □

3 Some new integral inequalities of Hermite-Hadamard type

We are now in a position to establish some Hermite-Hadamard type integral inequalities for a function that the power of the absolute value of its first derivative is α-preinvex.

Theorem 5 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q1, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 16 [ 1 ( α + 1 ) ( α + 2 ) 2 2 α ] 1 / q { [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ] 1 / q + [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1 and Hölder’s inequality, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | d t ) 1 1 / q { [ 0 1 | 1 2 t | | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } .
(11)

Using the α-preinvexity of | f | q , we have

0 1 | 1 2 t | | f ( b + 1 t 2 θ ( a , b ) ) | q d t 0 1 | 1 2 t | [ ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ] d t = 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ]

and

0 1 | 1 2 t | | f ( b + 2 t 2 θ ( a , b ) ) | q d t 0 1 | 1 2 t | [ ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ] d t = 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) × | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] .

Substituting the above two inequalities into (11) yields

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( 0 1 | 1 2 t | d t ) 1 1 / q { [ 0 1 | 1 2 t | ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 4 ( 1 4 ) 1 1 / q [ 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) ] 1 / q { [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ] 1 / q + [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] 1 / q } .

The proof of Theorem 5 is completed. □

Corollary 1 Under the conditions of Theorem  5, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 16 { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 6 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q>1, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q [ 1 ( α + 1 ) 2 α ] 1 / q { [ | f ( a ) | q + ( ( α + 1 ) 2 α 1 ) | f ( b ) | q ] 1 / q + [ ( 2 α + 1 1 ) | f ( a ) | q + ( 1 ( 1 α ) 2 α ) | f ( b ) | q ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the α-preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | q / ( q 1 ) d t ) 1 1 / q { [ 0 1 | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( 0 1 | 1 2 t | q / ( q 1 ) d t ) 1 1 / q × { [ 0 1 ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q [ 1 ( α + 1 ) 2 α ] 1 / q { [ | f ( a ) | q + ( ( α + 1 ) 2 α 1 ) | f ( b ) | q ] 1 / q + [ ( 2 α + 1 1 ) | f ( a ) | q + ( 1 ( 1 α ) 2 α ) | f ( b ) | q ] 1 / q } .

The proof of Theorem 6 is complete. □

Corollary 2 Under the conditions of Theorem  6, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 7 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q>1 and qr>0, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 1 ( 2 α + 1 ) 2 2 α + 1 ) | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 2 2 α + 1 1 ( 2 α + 1 ) 2 2 α + 1 ) | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q } .
(12)

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the α-preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | ( q r ) / ( q 1 ) d t ) 1 1 / q { [ 0 1 | 1 2 t | r | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | r | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 0 1 | 1 2 t | r ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | r ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } .
(13)

Since x r y α x 2 r + y 2 α 2 and z z α for x,y0 and 0z1, we obtain

0 1 | 1 2 t | r [ ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ] d t 0 1 [ 1 2 ( | 1 2 t | 2 r + ( 1 t 2 ) 2 α ) | f ( a ) | q + ( 1 + t 2 ) | 1 2 t | r | f ( b ) | q ] d t = [ 1 ( 2 r + 1 ) 2 2 r + 1 + 1 ( 2 α + 1 ) 2 2 α + 1 ] | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q
(14)

and

0 1 | 1 2 t | r [ ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ] d t 0 1 [ 1 2 ( | 1 2 t | 2 r + ( 2 t 2 ) 2 α ) | f ( a ) | q + t 2 | 1 2 t | r | f ( b ) | q ] d t = [ 1 ( 2 r + 1 ) 2 2 r + 1 + 2 2 α + 1 1 ( 2 α + 1 ) 2 2 α + 1 ] | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q .
(15)

Substituting (14) and (15) into (13) results in (12). The proof of Theorem 7 is complete. □

Corollary 3 Under the conditions of Theorem  7, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 1 24 ) | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 7 24 ) | f ( a ) | q + | f ( b ) | q ( r + 1 ) 2 r + 2 ] 1 / q } .

Theorem 8 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function and f is integrable on the θ-path P b c : c=b+θ(a,b). If | f | q is preinvex on A for q>1 and qr>0, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q r 1 ) 1 1 / q ( 1 r + 1 ) 1 / q × { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | ( q r ) / ( q 1 ) d t ) 1 1 / q × { [ 0 1 | 1 2 t | r | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | r | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 0 1 | 1 2 t | r ( 1 t 2 | f ( a ) | q + 1 + t 2 | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | r ( 2 t 2 | f ( a ) | q + t 2 | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 1 ( r + 1 ) 2 r + 2 | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ 3 ( r + 1 ) 2 r + 2 | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q } .

The proof of Theorem 8 is complete. □

Corollary 4 Under the conditions of Theorem  8, if r=q, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( 1 q + 1 ) 1 / q { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 9 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If f is α-preinvex on A, then

1 θ ( a , b ) b b + θ ( a , b ) f(x)dxmin { f ( a ) + α f ( b ) α + 1 , α f ( a ) + f ( b ) α + 1 } .
(16)

Proof Since b+tθ(a,b)A for 0t1, letting x=(1t)b+t(b+θ(a,b))=b+tθ(a,b) for 0t1 and using the α-preinvexity of f, we have

1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x = 0 1 f ( b + t θ ( a , b ) ) d t 0 1 [ t α f ( a ) + ( 1 t α ) f ( b ) ] d t = f ( a ) + α f ( b ) α + 1 .

The proof of Theorem 9 is complete. □

Corollary 5 Under the conditions of Theorem  9, if α=1, we have

1 θ ( a , b ) b b + θ ( a , b ) f(x)dx f ( a ) + f ( b ) 2 .

References

  1. Toader G: Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization. Univ. Cluj-Napoca, Cluj-Napoca; 1985:329-338.

    Google Scholar 

  2. Miheşan VG: A generalization of the convexity. Seminar on Functional Equations, Approximation and Convexity Cluj-Napoca, Romania 1993.

    Google Scholar 

  3. Antczak T: Mean value in invexity analysis. Nonlinear Anal. 2005,60(8):1473-1484. 10.1016/j.na.2004.11.005

    Article  MathSciNet  MATH  Google Scholar 

  4. Barani A, Ghazanfari AG, Dragomir SS: Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012., 2012: Article ID 247 10.1186/1029-242X-2012-247

    Google Scholar 

  5. Yang XM, Li D: On properties of preinvex functions. J. Math. Anal. Appl. 2001,256(1):229-241. 10.1006/jmaa.2000.7310

    Article  MathSciNet  MATH  Google Scholar 

  6. Ion DA: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova, Ser. Mat. Inform. 2007, 34: 83-88.

    MathSciNet  MATH  Google Scholar 

  7. Dragomir SS, Agarwal RP: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998,11(5):91-95. 10.1016/S0893-9659(98)00086-X

    Article  MathSciNet  MATH  Google Scholar 

  8. Dragomir SS: On some new inequalities of Hermite-Hadamard type for m -convex functions. Tamkang J. Math. 2002, 33: 45-55.

    MathSciNet  Google Scholar 

  9. Dragomir SS, Toader G: Some inequalities for m -convex functions. Stud. Univ. Babeş-Bolyai, Math. 1993,38(1):21-28.

    MathSciNet  MATH  Google Scholar 

  10. Bakula MK, Özdemir ME, Pečarić J: Hadamard type inequalities for m -convex and (α,m) -convex functions. J. Inequal. Pure Appl. Math. 2008.,9(4): Article ID 96 http://www.emis.de/journals/JIPAM/article1032.html

    MATH  Google Scholar 

  11. Bai R-F, Qi F, Xi B-Y: Hermite-Hadamard type inequalities for the m - and(α,m) -logarithmically convex functions. Filomat 2013,27(1):1-7. 10.2298/FIL1301001B

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai S-P, Qi F:Some inequalities for ( s 1 , m 1 )-( s 2 , m 2 )-convex functions on the co-ordinates. Glob. J. Math. Anal. 2013,1(1):22-28.

    MathSciNet  Google Scholar 

  13. Bai S-P, Wang S-H, Qi F: Some Hermite-Hadamard type inequalities for n -time differentiable (α,m) -convex functions. J. Inequal. Appl. 2012., 2012: Article ID 267 10.1186/1029-242X-2012-267

    Google Scholar 

  14. Dragomir SS: On Hadamard’s inequalities for convex functions. Math. Balk. 1992,6(3):215-222.

    MathSciNet  MATH  Google Scholar 

  15. Dragomir SS: Two mappings on connection to Hadamard’s inequality. J. Math. Anal. Appl. 1992,167(1):49-56. 10.1016/0022-247X(92)90233-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Dragomir SS, Pečarić J, Persson LE: Some inequalities of Hadamard type. Soochow J. Math. 1995,21(3):335-341.

    MathSciNet  MATH  Google Scholar 

  17. Dragomir SS, Pečarić JE, Sándor J: A note on the Jensen-Hadamard inequality. Anal. Numér. Théor. Approx. 1990,19(1):29-34.

    MathSciNet  MATH  Google Scholar 

  18. Qi F, Wei Z-L, Yang Q: Generalizations and refinements of Hermite-Hadamard’s inequality. Rocky Mt. J. Math. 2005,35(1):235-251. 10.1216/rmjm/1181069779

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang Y, Wang S-H, Qi F: Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s -preinvex. Facta Univ., Ser. Math. Inform. 2013,28(2):151-159.

    MathSciNet  MATH  Google Scholar 

  20. Xi B-Y, Bai R-F, Qi F: Hermite-Hadamard type inequalities for the m - and(α,m)-geometrically convex functions. Aequ. Math. 2012,184(3):261-269. 10.1007/s00010-011-0114-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Xi B-Y, Qi F: Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012., 2012: Article ID 980438 10.1155/2012/980438

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the anonymous referees for their helpful corrections to and valuable comments on the original version of this paper. This work was partially supported by the NNSF under Grant No. 11361038 of China and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZY13159, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Wang, Y., Zheng, MM. & Qi, F. Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex. J Inequal Appl 2014, 97 (2014). https://doi.org/10.1186/1029-242X-2014-97

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-97

Keywords