Open Access

Mappings of type generalized de La Vallée Poussin’s mean

Journal of Inequalities and Applications20132013:518

DOI: 10.1186/1029-242X-2013-518

Received: 21 April 2013

Accepted: 9 September 2013

Published: 9 November 2013

Abstract

In the present paper, we study the operator ideals generated by the approximationnumbers and generalized de La Vallée Poussin’s mean defined in(Şimşek et al. in J. Comput. Anal. Appl. 12(4):768-779, 2010). Ourresults coincide with those in (Faried and Bakery in J. Inequal. Appl. 2013,doi:10.1186/1029-242X-2013-186) for the generalized Cesáro sequence space.

Keywords

approximation numbers operator ideal generalized de La Vallée Poussin’s mean sequence space

1 Introduction

By L ( X , Y ) we denote the space of all bounded linear operators from anormed space X into a normed space Y. The set of nonnegative integersis denoted by N = { 0 , 1 , 2 , } and the real numbers by . By ω wedenote the space of all real sequences. A map which assigns to every operator T L ( X , Y ) a unique sequence ( s n ( T ) ) n = 0 is called an s-function and the number s n ( T ) is called the n th s-numbers ofT if the following conditions are satisfied:
  1. (a)

    T = s 0 ( T ) s 1 ( T ) 0 for all T L ( X , Y ) .

     
  2. (b)

    s n ( T 1 + T 2 ) s n ( T 1 ) + T 2 for all T 1 , T 2 L ( X , Y ) .

     
  3. (c)

    s n ( R S T ) R s n ( S ) T for all T L ( X 0 , X ) , S L ( X , Y ) and R L ( Y , Y 0 ) .

     
  4. (d)

    s n ( λ T ) = | λ | s n ( T ) for all T L ( X , Y ) , λ R .

     
  5. (e)

    rank ( T ) n if s n ( T ) = 0 for all T L ( X , Y ) .

     
  6. (f)
    s r ( I n ) = { 1 for  r < n , 0 for  r n ,
     

where I n is the identity operator on the Euclidean space 2 n .

As examples of s-numbers, we mention approximation numbers α n ( T ) , Gelfand numbers c n ( T ) , Kolmogorov numbers d n ( T ) and Tichomirov numbers d n ( T ) defined by:
  1. (I)

    α n ( T ) = inf { T A : A L ( X , Y )  and  rank ( A ) n } .

     
  2. (II)

    c n ( T ) = a n ( J Y T ) , where J Y is a metric injection (a metric injection is a one-to-one operator with closed range and with norm equal to one) from the space Y into a higher space ( Λ ) for a suitable index set Λ.

     
  3. (III)

    d n ( T ) = inf dim Y n sup x 1 inf y Y T x y .

     
  4. (IV)

    d n ( T ) = d n ( J Y T ) .

     
All these numbers satisfy the following condition:
  1. (g)

    s n + m ( T 1 + T 2 ) s n ( T 1 ) + s m ( T 2 ) for all T 1 , T 2 L ( X , Y ) .

     
An operator ideal U is a subclass of L = { L ( X , Y ) ; X  and  Y  are Banach spaces } such that its components { U ( X , Y ) ; X  and  Y  are Banach spaces } satisfy the following conditions:
  1. (i)

    I K U , where K denotes the 1-dimensional Banach space, where U L .

     
  2. (ii)

    If T 1 , T 2 U ( X , Y ) , then λ 1 T 1 + λ 2 T 2 U ( X , Y ) for any scalars λ 1 , λ 2 .

     
  3. (iii)

    If V L ( X 0 , X ) , T U ( X , Y ) and R L ( Y , Y 0 ) , then R T V U ( X 0 , Y 0 ) . See [1, 2] and [3].

     
For a sequence p = ( p n ) of positive real numbers with p n 1 , for all n N , the generalized Cesáro sequence space is defined by
Ces ( p ) = { x = ( x k ) ω : ρ ( λ x ) <  for some  λ > 0 } , where  ρ ( x ) = n = 0 ( 1 n + 1 k = 0 n | x k | ) p n .

The space Ces ( p ) is a Banach space with the norm x = inf { λ > 0 : ρ ( x λ ) 1 } .

If p = ( p n ) is bounded, we can simply write Ces ( p ) = { x ω : n = 0 ( 1 n + 1 k = 0 n | x k | ) p n < } . Also, some geometric properties of Ces ( p ) are studied in [46] and [7].

Let Λ = ( λ n ) be a nondecreasing sequence of positive real numberstending to infinity, and let λ 0 = 1 and λ n + 1 λ n + 1 .

De La Vallée Poussin’s means of a sequence x = ( x k ) are defined as follows:
t n ( x ) = 1 λ n j I n | x j | , where  I n = [ n λ n + 1 , n ] ,  for  k N .
The generalized de La Vallée Poussin’s mean sequence space was defined in [8].
V ( λ , p ) = { x ω : ρ ( λ x ) <  for some  λ > 0 } , where  ρ ( x ) = n = 0 ( 1 λ n k I n | x k | ) p n .
The space V ( λ , p ) is a Banach space with the norm
x = inf { λ > 0 : ρ ( x λ ) 1 } .
If p = ( p n ) is bounded, we can simply write
V ( λ , p ) = { x ω : n = 0 ( 1 λ n k I n | x k | ) p n < } .

Also, some geometric properties of V ( λ , p ) are studied in [9, 10] and [11].

Throughout this paper, the sequence ( p n ) is a bounded sequence of positive real numbers with

(b1) the sequence ( p n ) of positive real numbers is increasing and bounded with lim sup p n < and lim inf p n > 1 ,

(b2) the sequence ( λ n ) is a nondecreasing sequence of positive real numberstending to infinity, λ 0 = 1 and λ n + 1 λ n + 1 with n = 0 ( 1 λ n ) p n < .

Also we define e i = ( 0 , 0 , , 1 , 0 , 0 , ) , where 1 appears at the i th place for all i N .

Different classes of paranormed sequence spaces have been introduced and their differentproperties have been investigated. See [1215] and [16].

For any bounded sequence of positive numbers ( p n ) , we have the following well-known inequality | a n + b n | p n 2 h 1 ( | a n | p n + | b n | p n ) , h = sup n p n , and p n 1 for all n N . See [17].

2 Preliminary and notation

Definition 2.1 A class of linear sequence spaces E is called a specialspace of sequences (sss) having the following conditions:
  1. (1)

    E is a linear space and e n E for each n N .

     
  2. (2)

    If x ω , y E and | x n | | y n | for all n N , then x E i.e., E is solid’.

     
  3. (3)

    If ( x n ) n = 0 E , then ( x [ n 2 ] ) n = 0 = ( x 0 , x 0 , x 1 , x 1 , x 2 , x 2 , ) E , where [ n 2 ] denotes the integral part of n 2 .

     

Example 2.2 p is a special space of sequences for 0 < p < .

Example 2.3 ces p is a special space of sequences for 1 < p < .

Definition 2.4 U E app : = { U E app ( X , Y ) ; X , Y  are Banach spaces } , where U E app ( X , Y ) : = { T L ( X , Y ) : ( α n ( T ) ) n = 0 E } .

Theorem 2.5 U E app is an operator ideal if E is a specialspace of sequences (sss).

Proof See [18]. □

We give here the sufficient conditions on the generalized de La ValléePoussin’s mean such that the class of all bounded linear operators between anyarbitrary Banach spaces with n th approximation numbers of the bounded linearoperators in the generalized de La Vallée Poussin’s mean form an operatorideal.

3 Main results

Theorem 3.1 U V ( λ , p ) app is an operator ideal, if conditions (b1)and (b2) are satisfied.

Proof (1-i) Let x , y V ( λ , p ) since
n = 0 ( 1 λ n k I n | x k + y k | ) p n 2 h 1 ( n = 0 ( 1 λ n k I n | x k | ) p n + n = 0 ( 1 λ n k I n | y k | ) p n ) ,

h = sup n p n , then x + y V ( λ , p ) .

(1-ii) Let λ R , x V ( λ , p ) , then
n = 0 ( 1 λ n k I n | λ x k | ) p n sup n | λ | p n n = 0 ( 1 λ n k I n | x k | ) p n < ,

we get λ x V ( λ , p ) , from (1-i) and (1-ii), V ( λ , p ) is a linear space.

To show that e m V ( λ , p ) for each m N , since n = 0 ( 1 λ n ) p n < . Thus we get
ρ ( e m ) = n = m ( 1 λ n k I n | e m ( k ) | ) p n = n = m ( 1 λ n ) p n < .
Hence e m V ( λ , p ) .
  1. (2)

    Let | x n | | y n | for each n N , then n = 0 ( 1 λ n k I n | x k | ) p n n = 0 ( 1 λ n k I n | y k | ) p n since y V ( λ , p ) . Thus x V ( λ , p ) .

     
  2. (3)
    Let ( x n ) V ( λ , p ) , then we have
    n = 0 ( 1 λ n k I n | x [ k 2 ] | ) p n = n = 0 ( 1 λ 2 n k I 2 n | x [ k 2 ] | ) p 2 n + n = 0 ( 1 λ 2 n + 1 k I 2 n + 1 | x [ k 2 ] | ) p 2 n + 1 = n = 0 ( 1 λ 2 n ( ( k I n 2 | x k | ) + | x n | ) ) p n + n = 0 ( 1 λ 2 n + 1 ( k I n 2 | x k | ) ) p n 2 h 1 ( n = 0 ( 1 λ n ( 2 k I n | x k | ) ) p n + n = 0 ( 1 λ n k I n | x k | ) p n ) + 2 h n = 0 ( 1 λ n k I n | x k | ) p n 2 h 1 ( 2 h + 1 ) n = 0 ( 1 λ n k I n | x k | ) p n + 2 h n = 0 ( 1 λ n k I n | x k | ) p n ( 2 2 h 1 + 2 h 1 + 2 h ) n = 0 ( 1 λ n k I n | x k | ) p n < .
     

Hence ( x [ n 2 ] ) n = 0 V ( λ , p ) . Hence from Theorem 2.5 it follows that U V ( λ , p ) app is an operator ideal. □

Corollary 3.2 U ces ( p ) app is an operator ideal if ( p n ) is an increasing sequence of positive realnumbers, lim n sup p n < and lim n inf p n > 1 .

Corollary 3.3 U ces p app is an operator ideal if 1 < p < .

Theorem 3.4 The linear space F ( X , Y ) is dense in U V ( λ , p ) app ( X , Y ) if conditions (b1) and (b2) aresatisfied.

Proof First we prove that every finite mapping T F ( X , Y ) belongs to U V ( λ , p ) app ( X , Y ) . Since e m V ( λ , p ) for each m N and V ( λ , p ) is a linear space, then for every finite mapping T F ( X , Y ) , i.e., the sequence ( α n ( T ) ) n = 0 contains only finitely many numbers different from zero.Now we prove that U V ( λ , p ) app ( X , Y ) F ( X , Y ) ¯ . Since letting T U V ( λ , p ) app ( X , Y ) we get ( α n ( T ) ) n = 0 V ( λ , p ) , and since ρ ( ( α n ( T ) ) n = 0 ) < , let ε ] 0 , 1 [ , then there exists a natural number s > 0 such that ρ ( ( α n ( T ) ) n = s ) < ε 2 h + 2 δ c for some c 1 , where δ = max { 1 , n = s ( 1 λ n ) p n } . Since α n ( T ) is decreasing for each n N , we get
n = s + 1 2 s ( 1 λ n k I n α 2 s ( T ) ) p n n = s + 1 2 s ( 1 λ n k I n α n ( T ) ) p n n = s ( 1 λ n k I n α k ( T ) ) p n < ε 2 h + 2 δ c ,
(1)
then there exists A F 2 s ( X , Y ) , rank ( A ) 2 s with
n = 2 s + 1 3 s ( 1 λ n k I n T A ) p n n = s + 1 2 s ( 1 λ n k I n T A ) p n < ε 2 h + 2 δ c ,
(2)
and since ( p n ) is a bounded sequence of positive real numbers, so we cantake
sup n = s ( k I s T A ) p n < ε 2 h δ ,
(3)
also α n ( T ) = inf { T A : A L ( X , Y )  and  rank ( A ) n } . Then there exists a natural number N > 0 , A N with rank ( A N ) N and T A N 2 α N ( T ) . Since α n ( T ) n 0 , then
T A N N 0 , so we can take  n = 0 s ( 1 λ n k I n T A ) p n < ε 2 h + 3 δ c .
(4)
Since ( p n ) is an increasing sequence, by using (1), (2), (3) and (4),we get
d ( T , A ) = ρ ( α n ( T A ) ) n = 0 = n = 0 3 s 1 ( 1 λ n k I n α k ( T A ) ) p n + n = 3 s ( 1 λ n k I n α k ( T A ) ) p n n = 0 3 s ( 1 λ n k I n T A ) p n + n = s ( 1 λ n k I n + 2 s α k ( T A ) ) p n + 2 s 3 n = 0 s ( 1 λ n k I n T A ) p n + n = s ( 1 λ n k I 2 s 1 α k ( T A ) + 1 λ n k I n + 2 s I 2 s 1 α k ( T A ) ) p n 3 n = 0 s ( 1 λ n k I n T A ) p n + 2 h 1 ( n = s ( 1 λ n k I 2 s 1 α k ( T A ) ) p n + n = s ( 1 λ n k I n + 2 s I 2 s 1 α k ( T A ) ) p n ) 3 n = 0 s ( 1 λ n k I n T A ) p n + 2 h 1 ( n = s ( 1 λ n k I s T A ) p n + n = s ( 1 λ n k I n α k + 2 s ( T A ) ) p n ) 3 n = 0 s ( 1 λ n k = 0 n T A ) p n + 2 h 1 sup n = s ( k I s T A ) p n n = s ( 1 λ n ) p n + 2 h 1 n = s ( 1 λ n k I n α k ( T ) ) p n < ε .

 □

Definition 3.5 A class of special space of sequences (sss) E ρ is called a pre-modular special space of sequences ifthere exists a function ρ : E [ 0 , [ satisfying the following conditions:
  1. (i)

    ρ ( x ) 0 x E ρ and ρ ( x ) = 0 x = θ , where θ is the zero element of E,

     
  2. (ii)

    there exists a constant l 1 such that ρ ( λ x ) l | λ | ρ ( x ) for all values of x E and for any scalar λ,

     
  3. (iii)

    for some numbers k 1 , we have the inequality ρ ( x + y ) k ( ρ ( x ) + ρ ( y ) ) for all x , y E ,

     
  4. (iv)

    if | x n | | y n | for all n N , then ρ ( ( x n ) ) ρ ( ( y n ) ) ,

     
  5. (v)

    for some numbers k 0 1 , we have the inequality ρ ( ( x n ) ) ρ ( ( x [ n 2 ] ) ) k 0 ρ ( ( x n ) ) ,

     
  6. (vi)

    for each x = ( x ( i ) ) i = 0 E , there exists s N such that ρ ( x ( i ) ) i = s < . This means the set of all finite sequences is ρ-dense in E,

     
  7. (vii)

    for any λ > 0 , there exists a constant ζ > 0 such that ρ ( λ , 0 , 0 , 0 , ) ζ λ ρ ( 1 , 0 , 0 , 0 , ) .

     

It is clear from condition (ii) that ρ is continuous at θ.The function ρ defines a metrizable topology in E endowed withthis topology which is denoted by E ρ .

Example 3.6 p is a pre-modular special space of sequences for 0 < p < , with ρ ( x ) = n = 0 | x n | p .

Example 3.7 ces p is a pre-modular special space of sequences for 1 < p < , with ρ ( x ) = n = 0 ( 1 n + 1 k = 0 n | x n | ) p .

Theorem 3.8 V ( λ , p ) with ρ ( x ) = n = 0 ( 1 λ n k I n | x n | ) p n is a pre-modular special space of sequences ifconditions (b1) and (b2) are satisfied.

Proof (i) Clearly, ρ ( x ) 0 and ρ ( x ) = 0 x = θ .
  1. (ii)

    Since ( p n ) is bounded, then there exists a constant l 1 such that ρ ( λ x ) l | λ | ρ ( x ) for all values of x E and for any scalar λ.

     
  2. (iii)

    For some numbers k = max ( 1 , 2 h 1 ) 1 , we have the inequality ρ ( x + y ) k ( ρ ( x ) + ρ ( y ) ) for all x , y V ( λ , p ) .

     
  3. (iv)

    Let | x n | | y n | for all n N , then n = 0 ( 1 λ n k I n | x n | ) p n n = 0 ( 1 λ n k I n | y n | ) p n .

     
  4. (v)

    There exist some numbers k 0 = 2 h 1 ( 2 h + 1 ) + 2 h 1 ; by using (iv) we have the inequality ρ ( ( x n ) ) ρ ( ( x [ n 2 ] ) ) k 0 ρ ( ( x n ) ) .

     
  5. (vi)

    It is clear that the set of all finite sequences is ρ-dense in V ( λ , p ) .

     
  6. (vii)

    For any λ > 0 , there exists a constant 0 < ζ < λ p 0 1 such that ρ ( λ , 0 , 0 , 0 , ) ζ λ ρ ( 1 , 0 , 0 , 0 , ) . □

     

Theorem 3.9 Let X be a normed space, Y be aBanach space, and let conditions (b1) and (b2) besatisfied, then U V ρ ( λ , p ) app ( X , Y ) is complete.

Proof Let ( T m ) be a Cauchy sequence in U V ρ ( λ , p ) app ( X , Y ) . Since V ( λ , p ) with ρ ( x ) = n = 0 ( 1 λ n k I n | x n | ) p n is a pre-modular special space of sequences, then, byusing condition (vii) and since U V ρ ( λ , p ) app ( X , Y ) L ( X , Y ) , we have ρ ( ( α n ( T i T j ) ) n = 0 ) ρ ( α 0 ( T i T j ) , 0 , 0 , 0 , ) = ρ ( T i T j , 0 , 0 , 0 , ) ζ T i T j ρ ( 1 , 0 , 0 , 0 , ) , then ( T m ) is also a Cauchy sequence in L ( X , Y ) . Since the space L ( X , Y ) is a Banach space, then there exists T L ( X , Y ) such that T m T m 0 and since ( α n ( T m ) ) n = 0 E for all m N , ρ is continuous at θ andusing (iii), we have
ρ ( α n ( T ) ) n = 0 = ρ ( α n ( T T m + T m ) ) n = 0 k ρ ( α [ n 2 ] ( T m T ) ) n = 0 + k ρ ( α [ n 2 ] ( T m ) ) n = 0 k ρ ( ( T m T ) n = 0 ) + k ρ ( α n ( T m ) ) n = 0 < ε for some  k 1 .

Hence ( α n ( T ) ) n = 0 V ρ ( λ , p ) as such T U V ρ ( λ , p ) app ( X , Y ) . □

Corollary 3.10 Let X be a normed space, Y bea Banach space and ( p n ) be an increasing sequence of positive real numberswith lim sup p n < and lim inf p n > 1 , then U ces ( p ) app ( X , Y ) is complete.

Corollary 3.11 Let X be a normed space, Y bea Banach space and ( p n ) be an increasing sequence of positive real numberswith 1 < p < , then U ces p app ( X , Y ) is complete.

Declarations

Acknowledgements

The author is most grateful to the editor and anonymous referee for careful readingof the paper and valuable suggestions which helped in improving an earlier version ofthis paper.

Authors’ Affiliations

(1)
Department of Mathematics, Faculty of Science and Arts, King Abdulaziz University (KAU)
(2)
Department of Mathematics, Faculty of Science, Ain Shams University

References

  1. Kalton NJ: Spaces of compact operators. Math. Ann. 1974, 208: 267–278. 10.1007/BF01432152MathSciNetView ArticleMATHGoogle Scholar
  2. Lima Å, Oja E: Ideals of finite rank operators, intersection properties of balls, and theapproximation property. Stud. Math. 1999, 133: 175–186.MathSciNetMATHGoogle Scholar
  3. Pietsch A: Operator Ideals. North-Holland, Amsterdam; 1980.MATHGoogle Scholar
  4. Sanhan W, Suantai S: On k -nearly uniformly convex property in generalized Cesáro sequencespace. Int. J. Math. Math. Sci. 2003, 57: 3599–3607.MathSciNetView ArticleMATHGoogle Scholar
  5. Savas E, Karakaya V, Şimşek N:Some l ( p ) -type new sequence spaces and their geometricproperties. Abstr. Appl. Anal. 2009., 2009: Article ID 69697Google Scholar
  6. Şimşek N, Karakaya V: On some geometrical properties of generalized modular spaces of Cesáro typedefined by weighted means. J. Inequal. Appl. 2009., 2009: Article ID 932734. 40G05 (26E60)Google Scholar
  7. Karakaya V: Some geometric properties of sequence spaces involving lacunary sequence. J. Inequal. Appl. 2007., 2007: Article ID 81028Google Scholar
  8. Şimşek N, Savas E, Karakaya V: Some geometric and topological properties of a new sequence space defined by de LaVallée Poussin mean. J. Comput. Anal. Appl. 2010, 12(4):768–779.MathSciNetMATHGoogle Scholar
  9. Şimşek N, Savas E, Karakaya V: On geometrical properties of some Banach spaces. Appl. Math. Inf. Sci. 2013, 7(1):295–300. 10.12785/amis/070137MathSciNetView ArticleGoogle Scholar
  10. Şimşek N: On some geometric properties of sequence space defined by de La ValléePoussin mean. J. Comput. Anal. Appl. 2011, 13(3):565–573.MathSciNetMATHGoogle Scholar
  11. Çinar M, Karakaş M, Et M:Some geometric properties of the metric space V [ λ , p ] . J. Inequal. Appl. 2013., 2013: Article ID 28Google Scholar
  12. Rath D, Tripathy BC: Matrix maps on sequence spaces associated with sets of integers. Indian J. Pure Appl. Math. 1996, 27(2):197–206.MathSciNetMATHGoogle Scholar
  13. Tripathy BC, Sen M: On generalized statistically convergent sequences. Indian J. Pure Appl. Math. 2001, 32(11):1689–1694.MathSciNetMATHGoogle Scholar
  14. Tripathy BC, Chandra P: On some generalized difference paranormed sequence spaces associated withmultiplier sequences defined by modulus function. Anal. Theory Appl. 2011, 27(1):21–27. 10.1007/s10496-011-0021-yMathSciNetView ArticleMATHGoogle Scholar
  15. Tripathy BC: Matrix transformations between some classes of sequences. J. Math. Anal. Appl. 1997, 206: 448–450. 10.1006/jmaa.1997.5236MathSciNetView ArticleMATHGoogle Scholar
  16. Tripathy BC: On generalized difference paranormed statistically convergent sequences. Indian J. Pure Appl. Math. 2004, 35(5):655–663.MathSciNetMATHGoogle Scholar
  17. Altay B, Başar F:Generalization of the sequence space ( p ) derived by weighted means. J. Math. Anal. Appl. 2007, 330(1):147–185.View ArticleGoogle Scholar
  18. Faried N, Bakery AA: Mappings of type Orlicz and generalized Cesáro sequence space. J. Inequal. Appl. 2013. 10.1186/1029-242X-2013-186Google Scholar

Copyright

© Bakery; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/2.0), which permitsunrestricted use, distribution, and reproduction in any medium, provided the originalwork is properly cited.