Skip to main content

Fixed point theorems for generalized contractions on GP-metric spaces

Abstract

In this paper, we present two fixed point theorems on mappings, defined on GP-complete GP-metric spaces, which satisfy a generalized contraction property determined by certain upper semi-continuous functions. Furthermore, we illustrate applications of our theorems with a number of examples. Inspired by the work of Jachymski, we also establish equivalences of certain auxiliary maps in the context of GP-complete GP-metric spaces.

MSC:47H10, 54H25.

1 Introduction and preliminaries

In 1922, Stefan Banach [1] stated his celebrated theorem on the existence and uniqueness of a fixed point of certain self-maps defined on certain metric spaces for the first time. Specifically, this elegant theorem, also known as the Banach contraction mapping principle, can be formulated as follows: any mapping T:(X,d)(X,d) has a unique point xX such that Tx=x provided that there exists a constant k(0,1) satisfying the inequality d(Tx,Ty)kd(x,y) for every x,yX, where (X,d) is a complete metric space. A mapping T for which the inequality mentioned above holds is called a contraction.

Since its first appearance, the Banach contraction mapping principle has become the main tool to study contractions as they appear abundantly in a wide array of quantitative sciences. Its most well-known application is in ordinary differential equations, particularly, in the proof of the Picard-Lindelöf theorem which guarantees the existence and uniqueness of solutions of first-order initial value problems. It is worth emphasizing that the remarkable strength of the Banach principle originates from the constructive process it provides to identify the fixed point. This notable strength further attracted the attention of not only many prominent mathematicians studying in many branches of mathematics related to nonlinear analysis, but also many researchers who are interested in iterative methods to examine the quantitative problems involving certain mappings and space structures required in their work in various areas such as social sciences, biology, economics, and computer sciences.

Indeed, in 1994, Matthews, a computer scientist who is an expert on semantics, announced in [2] an analog of Banach’s principle in a new space he called a partial metric space. Matthews’s innovative approach was quickly adopted and improved by fixed point theorists (see, e.g., [327]) with the aim of discovering analogs of Banach’s principle in the context of partial metric spaces to broaden its applications and enrich the fixed point theory as a result.

A closer look to the work of these distinguished mathematicians after Matthews’s studies reveals that their discoveries can be categorized in terms of the techniques implemented to produce the analogs of Banach’s principle. The first technique is to introduce new space structures with certain properties which guarantee the existence and/or uniqueness of fixed points of contractions. In addition to Matthews’s investigations, cone metric spaces, D-metric spaces, and G-metric spaces (see, e.g., [2844]) constitute a few of the examples to the first approach. The second technique is to introduce mappings defined on metric spaces satisfying certain new contractive conditions. For example, cyclic contractions and weak ϕ contractions can be listed as a few.

As another example to the first approach mentioned above, Zand and Nezhad [43] recently introduced GP-metric spaces which are a combination of the notions of partial metric spaces and G-metric spaces. Then they proved a number of fixed point theorems on these new spaces for certain type of contractions. In this paper, we exercise the second approach by using the space structure they initiated to prove certain fixed point theorems for generalized contractions. First, we review the necessary notation, definitions, and fundamental results produced on GP-metric spaces that we will need in this work.

Definition 1.1 [43]

Let X be a non-empty set. A function G p :X×X×X[0,+) is called a GP-metric if the following conditions are satisfied:

(GP1) x=y=z if G p (x,y,z)= G p (z,z,z)= G p (y,y,y)= G p (x,x,x);

(GP2) 0 G p (x,x,x) G p (x,x,y) G p (x,y,z) for all x,y,zX;

(GP3) G p (x,y,z)= G p (x,z,y)= G p (y,z,x)= , symmetry in all three variables;

(GP4) G p (x,y,z) G p (x,a,a)+ G p (a,y,z) G p (a,a,a) for any x,y,z,aX.

Then the pair (X,G) is called a GP-metric space.

Example 1.1 [43]

Let X=[0,) and define G p (x,y,z)=max{x,y,z} for all x,y,zX. Then (X, G p ) is a GP-metric space.

Proposition 1.1 [43]

Let (X, G p ) be a GP-metric space, then for any x, y, z and aX, it follows that

  1. (i)

    G p (x,y,z) G p (x,x,y)+ G p (x,x,z) G p (x,x,x);

  2. (ii)

    G p (x,y,y)2 G p (x,x,y) G p (x,x,x);

  3. (iii)

    G p (x,y,z) G p (x,a,a)+ G p (y,a,a)+ G p (z,a,a)2 G p (a,a,a);

  4. (iv)

    G p (x,y,z) G p (x,a,z)+ G p (a,y,z) G p (a,a,a).

Proposition 1.2 [43]

Every GP-metric space (X, G p ) defines a metric space (X, D G p ) where

D G p (x,y)= G p (x,y,y)+ G p (y,x,x) G p (x,x,x) G p (y,y,y) for all x,yX.

Definition 1.2 [43]

Let (X, G p ) be a GP-metric space and let { x n } be a sequence of points of X. A point xX is said to be the limit of the sequence { x n } or x n x if

lim n , m G p (x, x m , x n )= G p (x,x,x).

Proposition 1.3 [43]

Let (X, G p ) be a GP-metric space. Then, for any sequence { x n } in X and a point xX, the following are equivalent:

  1. (A)

    { x n } is GP-convergent to x;

  2. (B)

    G p ( x n , x n ,x) G p (x,x,x) as n;

  3. (C)

    G p ( x n ,x,x) G p (x,x,x) as n.

Definition 1.3 [43]

Let (X, G p ) be a GP-metric space.

(S1) A sequence { x n } is called a GP-Cauchy if and only if lim m , n G p ( x n , x m , x m ) exists (and is finite);

(S2) A GP-partial metric space (X, G p ) is said to be GP-complete if and only if every GP-Cauchy sequence in X is GP-convergent to xX such that G p (x,x,x)= lim m , n G p ( x n , x m , x m ).

Now, we introduce the following.

Definition 1.4 Let (X, G p ) be a GP-metric space.

(M1) A sequence { x n } is called 0-GP-Cauchy if and only if lim m , n G p ( x n , x m , x m )=0;

(M2) A GP-metric space (X, G p ) is said to be 0-GP-complete if and only if every 0-GP-Cauchy sequence in X GP-converges to a point xX such that G p (x,x,x)=0.

Example 1.2 Let X=[0,+) and define G p (x,y,z)=max{x,y,z} for all x,y,zX. Then (X, G p ) is a GP-complete GP-metric space. Moreover, if X=Q[0,+) (where denotes a set of rational numbers), then (X, G p ) is a 0-GP-complete GP-metric space.

Lemma 1.1 (See [45])

Let (X, G p ) be a GP-metric space. Then

  1. (A)

    If G p (x,y,z)=0, then x=y=z;

  2. (B)

    If xy, then G p (x,y,y)>0.

In the rest of this paper, we will denote the positive natural numbers by N and the natural numbers by .

2 Main results

In this section, we present our findings on fixed point theorems on 0-GP-complete GP-metric spaces. We first start with the following definition.

Definition 2.1 Let (X, G p ) be a GP-metric space and T:(X, G p )(X, G p ) be a map. Let M(x,y,y) denote the value

max { G p ( x , y , y ) , G p ( x , T x , T x ) , G p ( y , T y , T y ) , 1 2 [ G p ( x , T y , T y ) + G p ( y , T x , T x ) ] }
(1)

for all x,yX.

Lemma 2.1 If (X, G p ) is a GP-metric space and T:XX is a map, then, for each xX, we have

M(x,Tx,Tx)=max { G p ( x , T x , T x ) , G p ( T x , T 2 x , T 2 x ) } .
(2)

Proof Let xX. Then

(3)

The proof is complete. □

Lemma 2.2 Let (X, G p ) be a GP-metric space and let T:XX be a map such that

G p (Tx,Ty,Ty)ϕ ( M ( x , y , y ) )
(4)

for all x,yX, where ϕ:[0,)[0,) is a function such that ϕ(t)<t for all t>0. If xX satisfies T n x T n + 1 x for all nN, then the following hold:

  1. (a)

    M( T n x, T n + 1 x, T n + 1 x)= G p ( T n x, T n + 1 x, T n + 1 x) for all nN;

  2. (b)

    G p ( T n x, T n + 1 x, T n + 1 x)ϕ( G p ( T n 1 x, T n x, T n x))< G p ( T n 1 x, T n x, T n x) for all n N .

Proof

  1. (a)

    From Lemma 2.1, we have

    M ( T n x , T n + 1 x , T n + 1 x ) =max { G p ( T n x , T n + 1 x , T n + 1 x ) , G p ( T n + 1 x , T n + 2 x , T n + 2 x ) } .

Since T n x T n + 1 x for all nN, then by Lemma 1.1(B), we get G p ( T n x, T n + 1 x, T n + 1 x)>0 for all nN. Consequently, M( T n x, T n + 1 x, T n + 1 x)>0. Now by condition (4), we deduce that

G p ( T n + 1 x , T n + 2 x , T n + 2 x ) ϕ ( M ( T n x , T n + 1 x , T n + 1 x ) ) < M ( T n x , T n + 1 x , T n + 1 x ) ,
(5)

that is, G p ( T n + 1 x, T n + 2 x, T n + 2 x)< G p ( T n x, T n + 1 x, T n + 1 x). Hence, (a) holds.

Clearly, (b) follows from (4), (a), and the fact that G p ( T n 1 x, T n x, T n x)>0 for all nN. □

Definition 2.2 A function ϕ:[0,)[0,) is called upper semi-continuous from the right if for each t0 and each sequence ( t n ) n N such that t n t and lim n t n =t, the equality holds lim sup n ϕ( t n )ϕ(t).

Theorem 2.1 Let (X, G p ) be a GP-complete GP-metric space and let T:XX be a map such that

G p (Tx,Ty,Ty)ϕ ( M ( x , y , y ) ) ,
(6)

for all x,yX, where ϕ:[0,)[0,) is an upper semi-continuous function from the right such that ϕ(t)<t for all t>0. Then T has a unique fixed point zX. Moreover, G p (z,z,z)=0.

Proof Let xX. If there is nN such that T n x= T n + 1 x, then T n x is a fixed point of T and the uniqueness of T n x follows as in the last part of the proof below. Hence, we assume that T n x T n + 1 x for all nN. Put x 0 =x and construct the sequence ( x n ) n N , where x n = T n x 0 for all nN. Thus, x n + 1 =T x n and G p ( x n , x n + 1 , x n + 1 )>0 for all nN. Define the sequence { s n } by s n = G p ( x n , x n + 1 , x n + 1 ) for all nN. From Lemma 2.2(b) we know that { s n } is a non-increasing sequence. Hence, there exists c R + such that s n c as n. We will show that c must be equal to 0. Let c>0. By taking limitsup as n in condition (b) of Lemma 2.2, we get that

c= lim sup n G p ( x n , x n + 1 , x n + 1 )= lim sup n ϕ ( G p ( x n , x n + 1 , x n + 1 ) )
(7)

and so, by upper semi-continuity from the right of the function ϕ, we deduce

c= lim sup n ϕ ( G p ( x n , x n + 1 , x n + 1 ) ) ϕ(c)<c,
(8)

which is a contradiction. Hence, c=0. Consequently, lim n G p ( x n , x n + 1 , x n + 1 )=0. Next we show that lim n , m G p ( x n , x m , x m )=0. Assume the contrary. Then there exist ε>0 and sequences ( n k ) k N , ( m k ) k N in N with m k n k k and such that G p ( x n k , x m k , x m k )ε for all k N . From the fact that lim n G p ( x n , x n + 1 , x n + 1 )=0, we can suppose, without loss of generality, that G p ( x n k , x m k 1 , x m k 1 )<ε. For each k N , we have

ε G p ( x n k , x m k , x m k ) G p ( x n k , x m k 1 , x m k 1 ) + G p ( x m k 1 , x m k , x m k ) < ε + G p ( x m k 1 , x m k , x m k ) ,
(9)

and hence lim k G p ( x n k , x m k , x m k )=ε. Now, let k 0 N be such that G p ( x n k , x n k + 1 , x n k + 1 )<ε and G p ( x m k , x m k + 1 , x m k + 1 )<ε for all k k 0 . Then

G p ( x n k , x m k , x m k ) M ( x n k , x m k , x m k ) = max { G p ( x n k , x m k , x m k ) , G p ( x n k , x n k + 1 , x n k + 1 ) , G p ( x m k , x m k + 1 , x m k + 1 ) , 1 2 [ G p ( x n k , x m k + 1 , x m k + 1 ) + G p ( x m k , x n k + 1 , x n k + 1 ) ] } max { G p ( x n k , x m k , x m k ) , G p ( x n k , x n k + 1 , x n k + 1 ) , G p ( x m k , x m k + 1 , x m k + 1 ) , 1 2 [ G p ( x n k , x n k + 1 , x n k + 1 ) + G p ( x n k + 1 , x n k + 2 , x n k + 2 ) + + G p ( x m k , x m k + 1 , x m k + 1 ) + G p ( x m k , x m k 1 , x m k 1 ) + G p ( x m k 1 , x m k 2 , x m k 2 ) + + G p ( x n k + 2 , x n k + 1 , x n k + 1 ) ] }
(10)

for all k k 0 . So, lim k M( x n k , x m k , x m k )=ε. Since M( x n k , x m k , x m k )ε for all k N and ϕ is upper semi-continuous from the right, we deduce that lim sup k ϕ(M( x n k , x m k , x m k ))ϕ(ε). On the other hand, for each k N , we have

ε G p ( x n k , x m k , x m k ) G p ( x n k , x n k + 1 , x n k + 1 ) + G p ( x n k + 1 , x m k + 1 , x m k + 1 ) + G p ( x m k + 1 , x m k , x m k ) G p ( x n k , x n k + 1 , x n k + 1 ) + ϕ ( M ( x n k , x m k , x m k ) ) + G p ( x m k + 1 , x m k , x m k ) ,
(11)

so ε lim sup k ϕ(M( x n k , x m k , x m k ))ϕ(ε), a contradiction because ϕ(ε)<ε. Consequently, lim n , m G p ( x n , x m , x m )=0 and thus ( x n ) n N is a Cauchy sequence in the GP-complete GP-metric space (X, G p ). Hence, there is zX such that

lim n , m G p ( x n , x m , x m )= lim n G p (z, x n , x n )= G p (z,z,z)=0.
(12)

We show that z is a fixed point of T. To this end, we first note that G p (z,Tz,Tz)= lim n M(z, x n , x n ), so lim sup n ϕ(M(z, x n , x n ))ϕ( G p (z,Tz,Tz)). On the other hand, since for each nN, G p (z,Tz,Tz) G p (z, x n , x n )+ G p ( x n ,Tz,Tz), it follows that

G p ( z , T z , T z ) lim sup n ( G p ( z , x n , x n ) + G p ( x n , T z , T z ) ) = lim sup n G p ( x n , T z , T z ) lim sup n ϕ ( M ( x n 1 , z , z ) ) ϕ ( G p ( z , T z , T z ) ) .
(13)

Therefore, G p (z,Tz,Tz)=0 and thus z=Tz. Finally, let uX be such that Tu=u. Then

G p (u,z,z)= G p (Tu,Tz,Tz)ϕ ( M ( u , z , z ) ) =ϕ ( G p ( u , z , z ) ) .
(14)

Hence, G p (u,z,z)=0, i.e., u=z. This concludes the proof. □

Definition 2.3 Let ψ(,):X×X[0,) be a given function. Then Q(x,y,z) will denote the value

(15)

Then we obtain the following statement.

Corollary 2.1 Let (X, G p ) be a GP-complete GP-metric space and let T:XX be a map such that

0 [ ψ ( z , z ) ψ ( y , y ) ] max { G p ( x , x , x ) , G p ( y , y , y ) , G p ( z , z , z ) } + ψ ( x , y ) ψ ( x , z ) [ ϕ ( Q ( x , y , z ) ) G p ( T x , T y , T z ) ]

for all x,y,zX, where ϕ:[0,)[0,) is an upper semi-continuous from the right function such that ϕ(t)<t for all t>0. Then T has a unique fixed point zX. Moreover, G p (z,z,z)=0.

Proof Clearly, by taking y=z in the hypothesis, we have

G p (Tx,Ty,Ty)ϕ ( Q ( x , y , y ) ) =ϕ ( M ( x , y , y ) )

for all x,yX. Then the conditions of Theorem 2.1 hold. This concludes the proof. □

Example 2.1 Let X=[0,), G p :X×X×XR be defined by G p (x,y,z)=max{x,y,z}. Then (X, G p ) is a GP-complete GP-metric space. Let f:XX be defined by Tx= x 2 ( x + 1 ) and ψ(t)= t 1 + t for all t[0,+).

Proof Without loss of generality, we assume that xy. Then

G p (Tx,Ty,Ty)= x 2 ( x + 1 ) x x + 1 =ψ(x)=ψ ( G p ( x , y , y ) ) .

Then the condition of Theorem 2.1 holds and T has a unique fixed point 0 in [0,). Moreover, G p (0,0,0)=0. □

Example 2.2 Let X=[0,), G p :X×X×XR be defined by G p (x,y,z)=max{x,y,z}. Then (X, G p ) is a GP-complete GP-metric space. Let T:XX be defined by

Tx={ 1 2 x 2 if  0 x < 1 / 3 , ( 1 x ) / 2 if  1 / 3 x 1 , 1 4 x if  x > 1

and ψ(t)= 1 2 t for all t[0,+).

Proof To prove this example, we need to consider the following cases:

  • Let 0x,y<1/3. Then

    G p (Tx,Ty,Ty)= 1 2 max { x 2 , y 2 } 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .
  • Let 1/3x,y1. Then

    G p (Tx,Ty,Ty)= 1 2 max{1x,1y} 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .
  • Let x,y>1. Then

    G p (Tx,Ty,Ty)= 1 4 max{x,y} 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .
  • Let 0x<1/3 and 1/3y1. Then

    G p (Tx,Ty,Ty)=max { 1 2 x 2 , ( 1 y ) / 2 } 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .
  • Let 0x<1/3 and y>1. Then

    G p (Tx,Ty,Ty)=max { 1 2 x 2 , 1 4 y } 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .
  • Let 1/3x1 and y>1. Then

    G p (Tx,Ty,Ty)=max { ( 1 x ) / 2 , 1 4 y } 1 2 max{x,y}=ψ ( G p ( x , y , y ) ) .

Then the condition of Theorem 2.1 holds and T has a unique fixed point 0 in [0,). Moreover, G p (0,0,0)=0. □

Lemma 2.3 Let ϕ:[0,)[0,) be nondecreasing and let t>0. If lim n ϕ n (t)=0, then ϕ(t)<t.

Theorem 2.2 Let (X, G p ) be a GP-complete GP-metric space and T:XX be a map such that

G p (Tx,Ty,Ty)ϕ ( N ( x , y , y ) ) ,
(16)

where N(x,y,y)=max{ G p (x,y,y), G p (x,Tx,Tx), G p (y,Ty,Ty)} for all x,yX, and ϕ:[0,)[0,) is a nondecreasing function such that lim n ϕ n (t)=0 for all t>0. Then T has a unique fixed point zX. Moreover, G p (z,z,z)=0.

Proof Let xX. If there is nN such that T n x= T n + 1 x, then T n x is a fixed point of T and the uniqueness of T n x follows as in the last part of the proof below. Hence, we will assume that T n x T n + 1 x for all nN. Put x 0 =x and construct the sequence ( x n ) n N , where x n = T n x 0 for all nN. Thus, x n + 1 =T x n and G p ( x n , x n + 1 , x n + 1 )>0 for all nN. By Lemma 2.2(b),

G p ( x n , x n + 1 , x n + 1 )ϕ ( G p ( x n 1 , x n , x n ) )
(17)

for all nN. Then, since ϕ is nondecreasing, we deduce that

G p ( x n , x n + 1 , x n + 1 ) ϕ n ( G p ( x 0 , x 1 , x 1 ) )
(18)

for all nN. Hence, lim n G p ( x n , x n + 1 , x n + 1 )=0. Now, choose an arbitrary ε>0. Since lim n ϕ n (ε)=0, it follows from Lemma 2.3 that ϕ(ε)<ε, so there is n ε N such that

G p ( x n , x n + 1 , x n + 1 )<εϕ(ε)
(19)

for all n n ε . Therefore,

G p ( x n , x n + 2 , x n + 2 ) G p ( x n , x n + 1 , x n + 1 ) + G p ( x n + 1 , x n + 2 , x n + 2 ) < ε ϕ ( ε ) + ϕ ( G p ( x n , x n + 1 , x n + 1 ) ) ε ϕ ( ε ) + ϕ ( ε ) = ε
(20)

for all n n ε . So,

G p ( x n , x n + 3 , x n + 3 ) G p ( x n , x n + 1 , x n + 1 ) + G p ( x n + 1 , x n + 3 , x n + 3 ) < ε ϕ ( ε ) + ϕ ( N ( x n , x n + 2 , x n + 2 ) ) ε ϕ ( ε ) + ϕ ( ε ) = ε ,
(21)

and following this process,

G p ( x n , x n + k , x n + k )<ε
(22)

for all n n ε and k N . Consequently,

lim n , m G p ( x n , x m , x m )=0,
(23)

and thus { x n } n N is a Cauchy sequence in the G p -complete G p -metric space (X, G p ). Hence, there is zX such that

0= lim n , m G p ( x n , x m , x m )= lim n G p (z, x n , x n )= G p (z,z,z).
(24)

We show that z is a fixed point of T. Assume the contrary. Then G p (z,Tz,Tz)>0. For each n N , we have

G p ( z , T z , T z ) G p ( z , x n , x n ) + G p ( x n , T z , T z ) G p ( z , x n , x n ) + ϕ ( N ( z , z , x n 1 ) ) .
(25)

From our assumption that G p (z,Tz,Tz)>0, it easily follows that there is n 0 N such that N(z,z, x n 1 )= G p (z,Tz,Tz) for all n n 0 . So,

G p (z,Tz,Tz) G p (z, x n , x n )+ϕ ( G p ( z , T z , T z ) )
(26)

for all n n 0 . Taking limits as n, we obtain that

G p (z,Tz,Tz)ϕ ( G p ( z , T z , T z ) ) < G p (z,Tz,Tz),
(27)

a contradiction. Consequently, z=Tz. Finally, the uniqueness of z follows as in Theorem 2.1. □

Example 2.3 Let X=[0,1], G p :X×X×XR be defined by G p (x,y,z)=max{x,y,z}. Then (X, G p ) is a GP-complete GP-metric space. Let T:XX be defined by

Tx= ( x 2 x 4 ) /8

and ψ(t)= 1 4 t 2 for all t[0,+).

Proof Without loss of generality, we assume that xy. Then

N(x,y,y)=max { G p ( x , y , y ) , G p ( x , T x , T x ) , G p ( y , T y , T y ) } =x.

And so

G p ( T x , T y , T y ) = max { ( x 2 x 4 ) / 8 , ( y 2 y 4 ) / 8 } = max { ( x x 2 ) ( x + x 2 ) 8 , ( y y 2 ) ( y + y 2 ) 8 } max { x ( x x 2 ) 4 , y ( y y 2 ) 4 } 1 4 max { x 2 , y 2 } = 1 4 x 2 = ψ ( N ( x , y , y ) ) .

Then the condition of Theorem 2.2 holds and T has a unique fixed point 0 in [0,1]. Moreover, G p (0,0,0)=0. □

Example 2.4 Let X=[0,), G p :X×X×XR be defined by G p (x,y,z)=max{x,y,z}. Then (X, G p ) is a GP-complete GP-metric space. Let T:XX be defined by

Tx={ 1 4 ( x 2 + x ) if  0 x < 1 , 1 8 x if  x 1

and ψ(t)= 1 2 t for all t[0,+).

Proof To prove this example, we need to examine the following cases:

  • Let 0x,y<1. Then N(x,y,y)=max{x,y} and

    G p (Tx,Ty,Ty)=max { 1 4 ( x 2 + x ) , 1 4 ( y 2 + y ) } 1 2 max{x,y}=ψ ( N ( x , y , y ) ) .
  • Let x,y1. Then N(x,y,y)=max{x,y} and

    G p (Tx,Ty,Ty)= 1 8 max{x,y} 1 2 max{x,y}=ψ ( N ( x , y , y ) ) .
  • Let 0x<1 and y1. Then N(x,y,y)=y and

    G p (Tx,Ty,Ty)=max { 1 4 ( x 2 + x ) , 1 8 y } 1 2 max{x,y}= 1 2 y=ψ ( N ( x , y , y ) ) .

Then the condition of Theorem 2.2 holds and T has a unique fixed point 0 in [0,1]. Moreover, G p (0,0,0)=0. □

Corollary 2.2 Let (X, G p ) be a GP-complete GP-metric space and T:XX be a map such that

G p (Tx,Ty,Tz)ϕ ( N ( x , y , z ) ) ,
(28)

where N(x,y,y)=max{ G p (x,y,z), G p (x,Tx,Tx), G p (y,Ty,Ty), G p (z,Tz,Tz)} for all x,yX, and ϕ:[0,)[0,) is a nondecreasing function such that lim n ϕ n (t)=0 for all t>0. Then T has a unique fixed point zX. Moreover, G p (z,z,z)=0.

Similarly, we have the corollary below.

Corollary 2.3 Let (X, G p ) be a GP-complete GP-metric space and T:XX be a map such that

0 [ ψ ( z , z ) ψ ( y , y ) ] max { G p ( x , x , x ) , G p ( y , y , y ) , G p ( z , z , z ) } + ψ ( x , y ) ψ ( x , z ) [ ϕ ( R ( x , y , z ) ) G p ( T x , T y , T z ) ] ,

where R(x,y,z)=max{ G p (x,y,z), G p (x,Tx,Tx), G p (y,Ty,Ty), G p (z,Tz,Tz)} for all x,y,zX, and ϕ:[0,)[0,) is a nondecreasing function such that lim n ϕ n (t)=0 for all t>0. Then T has a unique fixed point zX. Moreover, G p (z,z,z)=0.

In [46], Jachymski proved the equivalence of auxiliary functions (see Lemma 1). Inspired by the results from this remarkable paper of Jachymski, we finish this paper by stating the following theorem.

Theorem 2.3 (See [46])

Let (X, G p ) be a GP-complete GP-metric space and T:XX be a self-mapping. Assume that

M ( x , y , y ) = max { G p ( x , y , y ) , G p ( x , T x , T x ) , G p ( y , T y , T y ) , 1 2 [ G p ( x , T y , T y ) + G p ( y , T x , T x ) ] } .

Then the following statements are equivalent:

  1. (i)

    there exist functions ψ,ηΨ such that

    ψ ( G ( T x , T y , T y ) ) ψ ( M ( x , y , y ) ) η ( M ( x , y , y ) )

for any x,yX;

  1. (ii)

    there exists a function β:[0,)[0,1] such that for any bounded sequence { t n } of positive reals, β( t n )1 implies t n 0 and

    G(Tx,Ty,Ty)β ( M ( x , y , y ) ) ψ ( M ( x , y , y ) )

for any x,yX;

  1. (iii)

    there exists a continuous function η:[0,)[0,) such that η 1 ({0})=0 and

    G(Tx,Ty,Ty)M(x,y,y)η ( M ( x , y , y ) )

for any x,yX;

  1. (iv)

    there exist a function ψΨ and a nondecreasing, right-continuous function φ:[0,)[0,) with φ(t)<t and for all t>0 with

    ψ ( G ( T x , T y , T y ) ) φ ( ψ ( M ( x , y , y ) ) )

for any x,yX;

  1. (v)

    there exists a continuous and nondecreasing function φ:[0,)[0,) such that φ(t)<t and for all t>0 with

    ψ ( G ( T x , T y , T y ) ) φ ( M ( x , y , y ) )

for any x,yX.

References

  1. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3: 133–181.

    MATH  Google Scholar 

  2. Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197.

    Google Scholar 

  3. Ćirić LJ, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005

    Article  MATH  MathSciNet  Google Scholar 

  4. Di Bari C, Milojević M, Radenović S, Vetro P: Common fixed points for self-mappings on partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 140

    Google Scholar 

  5. Ilić D, Pavlović V, Rakocević V: Some new extensions of Banach’s contraction principle to partial metric space. Appl. Math. Lett. 2011, 24: 1326–1330. 10.1016/j.aml.2011.02.025

    Article  MATH  MathSciNet  Google Scholar 

  6. Karapinar E, Erhan IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014

    Article  MATH  MathSciNet  Google Scholar 

  7. Karapinar E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 4

    Google Scholar 

  8. Karapinar E: A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12: 185–191.

    MATH  MathSciNet  Google Scholar 

  9. Karapinar E: Some fixed point theorems on the class of comparable partial metric spaces on comparable partial metric spaces. Appl. Gen. Topol. 2011, 12: 187–192.

    MATH  MathSciNet  Google Scholar 

  10. Karapinar E: Ćirić types nonunique fixed point theorems on partial metric spaces. J. Nonlinear Sci. Appl. 2012, 5: 74–83.

    MATH  MathSciNet  Google Scholar 

  11. Karapinar E: Weak ϕ -contraction on partial metric spaces. J. Comput. Anal. Appl. 2012, 14: 206–210.

    MATH  MathSciNet  Google Scholar 

  12. Karapinar E, Shobkolaei N, Sedghi S, Vaezpour SM: A common fixed point theorem for cyclic operators on partial metric spaces. Filomat 2012, 26: 407–414. 10.2298/FIL1202407K

    Article  MATH  MathSciNet  Google Scholar 

  13. Karapinar E, Erhan I, Ulus AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 2012, 6(1):239–244.

    MathSciNet  Google Scholar 

  14. Nashine HK, Kadelburg Z, Radenović S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. 2011. doi:10.1016/j.mcm.2011.12.019

    Google Scholar 

  15. Kopperman R, Matthews SG, Pajoohesh H: What do partial metrics represent. Dagstuhl Seminar Proceedings 04351. In Spatial Representation: Discrete vs. Continuous Computational Models. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Wadern; 2005.

    Google Scholar 

  16. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36: 17–26.

    MATH  MathSciNet  Google Scholar 

  17. O’Neill, SJ: Two topologies are better than one. Technical report, University of Warwick, Coventry (1995)

  18. Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012, 159: 194–199. 10.1016/j.topol.2011.08.026

    Article  MATH  MathSciNet  Google Scholar 

  19. Romaguera S: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol. 2011, 12: 213–220.

    MATH  MathSciNet  Google Scholar 

  20. Romaguera S, Schellekens M: Partial metric monoids and semivaluation spaces. Topol. Appl. 2005, 153: 948–962. 10.1016/j.topol.2005.01.023

    Article  MATH  MathSciNet  Google Scholar 

  21. Romaguera S, Valero O: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 2009, 19: 541–563. 10.1017/S0960129509007671

    Article  MATH  MathSciNet  Google Scholar 

  22. Schellekens MP: A characterization of partial metrizability: domains are quantifiable. Theor. Comput. Sci. 2003, 305: 409–432. 10.1016/S0304-3975(02)00705-3

    Article  MATH  MathSciNet  Google Scholar 

  23. Abedelljawad T, Karapınar E, Taş K: Existence and uniqueness of common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

    Article  MathSciNet  Google Scholar 

  24. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157: 2778–2785. 10.1016/j.topol.2010.08.017

    Article  MATH  MathSciNet  Google Scholar 

  25. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730

    Google Scholar 

  26. Aydi H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2011., 2011: Article ID 647091

    Google Scholar 

  27. Aydi H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 2011, 4(2):1–15.

    MATH  MathSciNet  Google Scholar 

  28. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MATH  MathSciNet  Google Scholar 

  29. Mustafa Z, Sims B: Some remarks concerning D -metric spaces. Proceedings of the International Conferences on Fixed Point Theory and Applications Valencia, Spain, July 2003 2003, 189–198.

    Google Scholar 

  30. Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. Thesis, The University of Newcastle, Callaghan, Australia (2005)

  31. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorem for mappings on complete G -metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

    Google Scholar 

  32. Mustafa Z, Shatanawi W, Bataineh F: Existence of fixed point results in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  33. Mustafa Z, Obiedat H: A fixed point theorem of Reich in G -metric spaces. CUBO 2010, 12(1):83–93. 10.4067/S0719-06462010000100008

    Article  MATH  MathSciNet  Google Scholar 

  34. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175. doi:10.1155/2009/917175

    Google Scholar 

  35. Mustafa Z, Khandagjy M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48(3):304–319.

    MATH  Google Scholar 

  36. Mustafa Z, Awawdeh F, Shatanawi W: Fixed point theorem for expansive mappings in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5(49–52):2463–2472.

    MATH  MathSciNet  Google Scholar 

  37. Mustafa Z, Aydi H, Karapınar E: On common fixed points in G -metric spaces using (E.A) property. Comput. Math. Appl. 2012. doi:10.1016/j.camwa.2012.03.051

    Google Scholar 

  38. Mustafa Z, Aydi H, Karapınar E: Mixed g -monotone property and quadruple fixed point theorems in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 71

    Google Scholar 

  39. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G -metric spaces. Math. Comput. Model. 2010, 52: 797–801. 10.1016/j.mcm.2010.05.009

    Article  MATH  MathSciNet  Google Scholar 

  40. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 181650

    Google Scholar 

  41. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr. Appl. Anal. 2011., 2011: Article ID 126205

    Google Scholar 

  42. Valero O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6(2):229–240.

    Article  MATH  MathSciNet  Google Scholar 

  43. Zand MRA, Nezhad AD: A generalization of partial metric spaces. J. Contemp. Appl. Math. 2011, 24: 86–93.

    Google Scholar 

  44. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    Article  MATH  MathSciNet  Google Scholar 

  45. Aydi H, Karapinar E, Salimi P: Some fixed point results in GP -metric spaces. J. Appl. Math. 2012., 2012: Article ID 891713

    Google Scholar 

  46. Jachymski J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 2011, 74: 768–774. 10.1016/j.na.2010.09.025

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karapınar.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Bilgili, N., Karapınar, E. & Salimi, P. Fixed point theorems for generalized contractions on GP-metric spaces. J Inequal Appl 2013, 39 (2013). https://doi.org/10.1186/1029-242X-2013-39

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-39

Keywords