Skip to main content

A new variant of statistical convergence

Abstract

In this paper we study the notion of statistical (A,λ)-summability, which is a generalization of statistical A-summability. We study here many other related concepts and its relations with statistical convergence and λ-statistical convergence and provide some interesting examples.

1 Introduction and preliminaries

The concept of statistical convergence was first introduced by Fast [1]. In 1953 the concept arose as an example of convergence in density as introduced by Buck [2]. Schoenberg [3] studied statistical convergence as a summability method and Zygmund [4] established a relation between it and strong summability. This idea has grown a little faster after the papers of Šalát [5] , Fridy [6] , Connor [7, 8], Kolk [9], Mursaleen [10], Mursaleen and Edely [11, 12], Mursaleen and Mohiuddine [1317] and many others. Its various generalizations, extensions and variants have been studied by various authors so far. For example, lacunary statistical convergence [18], λ-statistical convergence [10, 1921], A-statistical convergence [9], statistical summability (C,1) [2224]; statistical λ-summability [25], statistical lacunary summability [26], statistical A-summability [27]etc. For more details, related concepts and applications, we refer to [2841] and references therein. Here we define the notion of statistical (A,λ)-summability as a λ-statistical convergence of A-transform of x and prove some results on some related sets of sequences. The results of this paper extend several ones obtained up to now and establish several inclusion relations, implications and other properties.

Let KN, the set of natural numbers. Then the natural density of K is defined by

δ(K)= lim n 1 n | { k n : k K } |

if the limit exists, where the vertical bars denote the cardinality of the enclosed set.

The idea of λ-statistical convergence was introduced in [10] as follows:

Let λ=( λ n ) be a non-decreasing sequence of positive numbers tending to ∞ such that

λ n + 1 λ n +1, λ 1 =0.

The generalized de la Vallée-Poussin mean is defined by

t n (x)=: 1 λ n j I n x j ,

where I n =[n λ n +1,n].

Let KN. Then

δ λ (K)= lim n 1 λ n | { n λ n + 1 j n : j K } |

is said to be λ-density of K.

In case λ n =n, λ-density reduces to the natural density. Also, since ( λ n /n)1, δ(K) δ λ (K) for every KN.

A sequence x=( x k ) is said to be λ-statistically convergent to L if for every ϵ>0 the set K ϵ :={kN:| x k L|ϵ} has λ-density zero, i.e., δ λ ( K ϵ )=0. That is,

lim n 1 λ n | { n λ n + 1 j n : | x k L | ϵ } | =0.

In this case we write st λ -limx=L.

Let A=( a n k ) be an infinite matrix of real or complex numbers and x=( x k ) be a sequence of real or complex numbers. Then we write A n (x)= k = 1 a n k x k , which is called the A-transform of the sequence x=( x k ) whenever the series on the right converges for each n=1,2, .

We assume throughout this paper that the symbols ω and c denote the spaces of all sequences (real or complex numbers) and the space of all convergent sequences, respectively. Let X and Y be two nonempty subsets of the space ω. If xX implies Ax=( A n (x))Y, then we say that A defines a matrix transformation from X into Y, and we denote by (X,Y) the class of matrices A which transform X into Y. By ( X , Y ) reg we denote the subset of (X,Y) for which limit or sum is preserved.

A matrix A=( a n k ) is said to be conservative if Axc for x=( x k )c, and we denote this by A(c,c).

A matrix A=( a n k ) is said to be regular if it is conservative and limAx=limx, and we denote this by A ( c , c ) reg .

The following are well-known Silverman-Toeplitz [42] conditions for the regularity of A.

A matrix A=( a n k ) is regular, i.e., A ( c , c ) reg if and only if

(i) sup n k | a n k |<;

(ii) lim n a n k =0, for each k;

(iii) lim n k a n k =1.

Let A=( a i j ) be a non-negative regular matrix. A sequence x is said to be statistically A-summable to L if, for every ϵ>0, δ({in:| y i L|ϵ})=0, i.e.,

lim n 1 n | { i n : | y i L | ϵ } | =0,

where y i = A i (x). Thus x is statistically A-summable to L if and only if Ax is statistically convergent to L. In this case we write L= ( A ) st -limx=st-limAx.

2 Statistical (A,λ)-summability

In [43], Malafosse and Rakočević presented the following definition of statistically (A,λ)-summable.

Definition 2.1 A sequence x is said to be statistically (A,λ)-summable to L if for every ϵ>0, δ λ ({n λ n +1in:| y i L|ϵ})=0, i.e.,

lim n 1 λ n | { n λ n + 1 i n : | y i L | ϵ } | =0.

Thus x is statistically (A,λ)-summable to L if and only if Ax is λ-statistically convergent to L. In this case we write L= ( A , λ ) st -limx= st λ -limAx. By ( A , λ ) st we denote the set of all statistically (A,λ)-summable sequences.

We define the following.

Definition 2.2 A sequence x=( x k ) is said to be strongly (A, λ q )-convergent (0<q<) to the limit L if lim n 1 λ n i I n | y i L | q =0, and we write it as x k L [ A , λ ] q . In this case L is called the [ A , λ ] q -limit of x.

Remarks 2.3

(i) If A=I (the unit matrix), then the statistical (A,λ)-summability is reduced to the λ-statistical convergence.

(ii) If λ n =n, then the statistical (A,λ)-summability is reduced to the statistical A-summability.

(iii) If λ n =n and

a i k ={ 1 i + 1 , 0 k i , 0 , otherwise ,

then the statistical (A,λ)-summability is reduced to the statistical (C,1)-summability due to Moricz [22].

(iv) If λ n =n and

a i k ={ p k P i , 0 k i , 0 , otherwise ,

then the statistical (A,λ)-summability is reduced to the statistical ( N ¯ ,p)-summability due to Moricz and Orhan [44], where p=( p k ) is a sequence of nonnegative numbers such that p 0 >0 and

P i = k = 0 i p k (i).

(v) If λ n =n and

a i k ={ 1 k l i , 0 k i , 0 , otherwise ,

where l i = k = 0 i 1 ( k + 1 ) , then the statistical (A,λ)-summability is reduced to the statistical (H,1)-summability due to Moricz [45].

3 Main results

In this section, we establish the relation between statistical (A,λ)-summability and A-statistical convergence.

Theorem 3.1 If a bounded sequence is A-statistically convergent to and lim inf n λ n n >0, then it is A summable to , statistically A-summable to , and hence statistically (A,λ)-summable to but not conversely.

Proof Let x be bounded and A-statistically convergent to L, and K ϵ ={kn:| x k L|ϵ}. Then

| A n ( x ) L | = | k = 1 a n k ( x k L ) + L ( k = 1 a n k 1 ) | k = 1 a n k | x k L | + | L | | k = 1 a n k 1 | = k K ϵ a n k | x k L | + k K ϵ a n k | x k L | + | L | | k = 1 a n k 1 | sup k | x k L | k K ϵ a n k + ϵ k K ϵ a n k + | L | | k = 1 a n k 1 | .

By using the definition of A-statistical convergence and the conditions of regularity of A, we get

lim | A n ( x ) L | =0since ϵ was arbitrary,

and hence st-lim| A n (x)L|=0, i.e., x is statistically A-summable to L. Now, using Theorem 3.1 of [10], we get st λ -lim| A n (x)L|=0, i.e., x is statistically (A,λ)-summable to L.

To see that the converse does not hold, we construct the following example.

Let λ n =n and A be a Cesàro matrix, i.e.,

a n k ={ 1 n + 1 , 0 n k , 0 , otherwise .

Let

x k ={ 1 , if  k  is odd , 0 , if  k  is even .

Then x is A-summable to 1/2 (and hence statistically (A,λ)-summable to 1/2) but not A-statistically convergent.

This completes the proof of the theorem. □

Theorem 3.2 If lim sup n (n λ n )< and x is statistically (A,λ)-summable to L, then x is statistically A-summable to L.

Proof Let lim sup n (n λ n )<. Then there exists M>0 such that n λ n M for all n. Since 1 n 1 λ n and

{ 1 i n : | y i L | ε } { i I n : | y i L | ε } { 1 i n λ n : | y i L | ε } ,

we have

1 n | { 1 i n : | y i L | ε } | 1 λ n | { 1 i n : | y i L | ε } | 1 λ n | { i I n : | y i L | ε } | + 1 λ n | { i n λ n : | y i L | ε } | 1 λ n | { i I n : | y i L | ε } | + M λ n .

Now, taking the limit as n, we get the desired result. □

Theorem 3.3 Statistical (A,λ)-summability implies statistical A-summability if and only if

lim inf n λ n n >0.
(3.1)

Proof For ε>0, we have

{ i I n : | y i L | ε } { i n : | y i L | ε } .

Therefore

1 n | { i n : | y i L | ε } | 1 n | { i I n : | y i L | ε } | λ n n 1 λ n | { i I n : | y i L | ε } | .

Taking the limit as n and using (3.1), we get that statistical (A,λ)-summability implies statistical A-summability.

Conversely, suppose that

lim inf n λ n n =0.

Choose a subsequence ( n ( j ) ) j 1 such that λ n ( j ) n ( j ) < 1 j . Define a sequence x= ( x k ) k 1 such that

y i ={ 1 , for  i I n ( j ) , j = 1 , 2 , 3 , , 0 , otherwise .

Then, as in Theorem 3.1 of [10], we get that y=( y i ) is not λ-statistically convergent, i.e., x is not statistically (A,λ)-summable. Hence (3.1) is necessary.

This completes the proof of the theorem. □

Theorem 3.4 (a) If 0<q< and a sequence x=( x k ) is strongly (A, λ q )-convergent to the limit L, then x is statistically (A,λ)-convergent to L.

(b) If x=( x k ) is bounded and statistically (A,λ)-convergent to L, then x k L [ A , λ ] q .

Proof (a) It follows easily from the following:

1 λ n i I n | y i L | q ε q λ n | { i I n : | y i L | ε } |.

The following example shows that the inclusion is proper. Let x= ( x n ) n 1 be such that its A-transform is given by

y i ={ i , for  n [ λ n ] + 1 i n , 0 , otherwise .

Then Ax and for 0<ε1,

1 λ n | { i I n : | y i 0 | ε } |= [ λ n ] λ n 0(n),

i.e., x is statistically (A,λ)-convergent to 0. But

1 λ n i I n | y i 0 | q 0,

i.e., x is not strongly (A, λ q )-convergent to the limit 0.

(b) Suppose x=( x k ) is bounded and statistically (A,λ)-convergent to L. Then | x k L|M for all k, where M>0. For ε>0, we have

1 λ n k I n | y i L | q = 1 λ n i I n | y i L | q ϵ | y i L | q + 1 λ n i I n | y i L | q < ϵ | y i L | q M λ n | { i I n : | y i L | ε } | + ε q .

Hence x k L [ A , λ ] q if x is statistically (A,λ)-convergent to L.

This completes the proof of the theorem. □

References

  1. Fast H: Sur la convergence statistique. Colloq. Math. 1951, 2: 241–244.

    MathSciNet  MATH  Google Scholar 

  2. Buck RC: Generalized asymptotic density. Am. J. Math. 1953, 75: 335–346. 10.2307/2372456

    Article  MathSciNet  MATH  Google Scholar 

  3. Schoenberg IJ: The integrability of certain functions and related summability methods. Am. Math. Mon. 1959, 66: 361–375. 10.2307/2308747

    Article  MathSciNet  MATH  Google Scholar 

  4. Zygmund A: Trigonometric Series. Cambridge University Press, Cambridge; 1959.

    MATH  Google Scholar 

  5. Šalát T: On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30: 139–150.

    MathSciNet  MATH  Google Scholar 

  6. Fridy JA: On statistical convergence. Analysis 1985, 5: 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  7. Connor J: The statistical and strong p -Cesàro convergence of sequences. Analysis 1988, 8: 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  8. Connor J: On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 1989, 32: 194–198. 10.4153/CMB-1989-029-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Kolk E: Matrix summability of statistically convergent sequences. Analysis 1993, 13: 77–83.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mursaleen M: λ -statistical convergence. Math. Slovaca 2000, 50: 111–115.

    MathSciNet  MATH  Google Scholar 

  11. Mursaleen M, Edely OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288: 223–231. 10.1016/j.jmaa.2003.08.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Mursaleen M, Edely OHH: Generalized statistical convergence. Inf. Sci. 2004, 162: 287–294. 10.1016/j.ins.2003.09.011

    Article  MathSciNet  MATH  Google Scholar 

  13. Mursaleen M, Mohiuddine SA: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 2009, 41: 2414–2421. 10.1016/j.chaos.2008.09.018

    Article  MathSciNet  MATH  Google Scholar 

  14. Mursaleen M, Mohiuddine SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 2009, 233(2):142–149. 10.1016/j.cam.2009.07.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Mursaleen M, Mohiuddine SA: On ideal convergence of double sequences in probabilistic normed spaces. Mathem. Rep. (Buchar.) 2010, 12(4):359–371.

    MathSciNet  MATH  Google Scholar 

  16. Mursaleen M, Mohiuddine SA, Edely OHH: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput. Math. Appl. 2010, 59: 603–611. 10.1016/j.camwa.2009.11.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Mursaleen M, Mohiuddine SA: On ideal convergence in probabilistic normed spaces. Math. Slovaca 2012, 62(1):49–62. 10.2478/s12175-011-0071-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Fridy JA, Orhan C: Lacunary statistical convergence. Pac. J. Math. 1993, 160: 43–51. 10.2140/pjm.1993.160.43

    Article  MathSciNet  MATH  Google Scholar 

  19. Edely OHH, Mohiuddine SA, Noman AK: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 2010, 23: 1382–1387. 10.1016/j.aml.2010.07.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Savaş E, Mohiuddine SA: λ ¯ -statistically convergent double sequences in probabilistic normed spaces. Math. Slovaca 2012, 62(1):99–108. 10.2478/s12175-011-0075-5

    MathSciNet  MATH  Google Scholar 

  21. Mohiuddine SA, Alotaibi A, Mursaleen M: Statistical convergence through de la Vallée-Poussin mean in locally solid Riesz spaces. Adv. Differ. Equ. 2013., 2013: Article ID 66

    Google Scholar 

  22. Moricz F:Tauberian conditions under which statistical convergence follows from statistical summability (C,1). J. Math. Anal. Appl. 2002, 275: 277–287. 10.1016/S0022-247X(02)00338-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohiuddine SA, Alotaibi A, Mursaleen M:Statistical summability (C,1) and a Korovkin type approximation theorem. J. Inequal. Appl. 2012., 2012: Article ID 172

    Google Scholar 

  24. Mohiuddine SA, Alotaibi A:Korovkin second theorem via statistical summability (C,1). J. Inequal. Appl. 2013., 2013: Article ID 149

    Google Scholar 

  25. Mursaleen M, Alotaibi A: Statistical summability and approximation by de la Vallée-Poussin mean. Appl. Math. Lett. 2011, 24: 320–324. (Erratum: Appl. Math. Lett. 25, 665 (2012)) 10.1016/j.aml.2010.10.014

    Article  MathSciNet  MATH  Google Scholar 

  26. Mursaleen M, Alotaibi A: Statistical lacunary summability and a Korovkin type approximation theorem. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 2011, 57(2):373–381. 10.1007/s11565-011-0122-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Edely OHH, Mursaleen M: On statistical A -summability. Math. Comput. Model. 2009, 49: 672–680. 10.1016/j.mcm.2008.05.053

    Article  MathSciNet  MATH  Google Scholar 

  28. Alotaibi A, Mursaleen M: A -statistical summability of Fourier series and Walsh-Fourier series. Appl. Math. Inf. Sci. 2012, 6(3):535–538.

    MathSciNet  Google Scholar 

  29. Freedman AR, Sember JJ: Densities and summability. Pac. J. Math. 1981, 95: 293–305. 10.2140/pjm.1981.95.293

    Article  MathSciNet  MATH  Google Scholar 

  30. Fridy JA, Miller HI: A matrix characterization of statistical convergence. Analysis 1991, 11: 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohiuddine SA, Alghamdi MA: Statistical summability through a lacunary sequence in locally solid Riesz spaces. J. Inequal. Appl. 2012., 2012: Article ID 225

    Google Scholar 

  32. Mohiuddine SA, Aiyub M: Lacunary statistical convergence in random 2-normed spaces. Appl. Math. Inf. Sci. 2012, 6(3):581–585.

    MathSciNet  Google Scholar 

  33. Mohuiddine SA, Alotaibi A, Alsulami SM: Ideal convergence of double sequences in random 2-normed spaces. Adv. Differ. Equ. 2012., 2012: Article ID 149

    Google Scholar 

  34. Mohiuddine SA, Alotaibi A, Mursaleen M: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 719729

    Google Scholar 

  35. Mohiuddine SA, Danish Lohani QM: On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 2009, 42: 1731–1737. 10.1016/j.chaos.2009.03.086

    Article  MathSciNet  MATH  Google Scholar 

  36. Mohiuddine SA, Savas E: Lacunary statistical convergent double sequences in probabilistic normed spaces. Ann. Univ. Ferrara 2012, 58: 331–339. 10.1007/s11565-012-0157-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Mohiuddine SA, Şevli H, Cancan M: Statistical convergence in fuzzy 2-normed space. J. Comput. Anal. Appl. 2010, 12(4):787–798.

    MathSciNet  MATH  Google Scholar 

  38. Mohiuddine SA, Şevli H, Cancan M: Statistical convergence of double sequences in fuzzy normed spaces. Filomat 2012, 26(4):673–681. 10.2298/FIL1204673M

    Article  MathSciNet  MATH  Google Scholar 

  39. Belen C, Mohiuddine SA: Generalized weighted statistical convergence and application. Appl. Math. Comput. 2013, 219: 9821–9826. 10.1016/j.amc.2013.03.115

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohiuddine SA, Alotaibi A: Statistical convergence and approximation theorems for functions of two variables. J. Comput. Anal. Appl. 2013, 15(2):218–223.

    MathSciNet  MATH  Google Scholar 

  41. Mohiuddine SA, Hazarika B, Alotaibi A: Double lacunary density and some inclusion results in locally solid Riesz spaces. Abstr. Appl. Anal. 2013., 2013: Article ID 507962

    Google Scholar 

  42. Cooke RG: Infinite Matrices and Sequence Spaces. Macmillan & Co., London; 1950.

    MATH  Google Scholar 

  43. de Malafosse B, Rakočević V: Matrix transformation and statistical convergence. Linear Algebra Appl. 2007, 420: 377–387. 10.1016/j.laa.2006.07.021

    Article  MathSciNet  MATH  Google Scholar 

  44. Moricz F, Orhan C: Tauberian conditions under which statistical convergence follows from statistical summability by weighted means. Studia Sci. Math. Hung. 2004, 41(4):391–403.

    MathSciNet  MATH  Google Scholar 

  45. Moricz F: Theorems related to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences. Analysis 2004, 24: 127–145.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (334/130/1433). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mursaleen.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Mohiuddine, S.A., Alotaibi, A. & Mursaleen, M. A new variant of statistical convergence. J Inequal Appl 2013, 309 (2013). https://doi.org/10.1186/1029-242X-2013-309

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-309

Keywords