Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators

Journal of Inequalities and Applications20132013:154

DOI: 10.1186/1029-242X-2013-154

Received: 20 November 2012

Accepted: 20 March 2013

Published: 4 April 2013

Abstract

In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral a b f ( λ ) d u ( λ ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq1_HTML.gif in the case when the integrand f is n-time differentiable and the derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is either of locally bounded variation, or Lipschitzian on an interval incorporating [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif. A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well.

MSC:41A51, 26D15, 26D10.

Keywords

Riemann-Stieltjes integral Taylor’s representation functions of bounded variation Lipschitzian functions integral transforms finite Laplace-Stieltjes transform finite Fourier-Stieltjes sine and cosine transforms

1 Introduction

The concept of Riemann-Stieltjes integral a b f ( t ) d u ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq4_HTML.gif, where f is called the integrand, u is called the integrator, plays an important role in mathematics, for instance in the definition of complex integral, the representation of bounded linear functionals on the Banach space of all continuous functions on an interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, in the spectral representation of selfadjoint operators on complex Hilbert spaces and other classes of operators such as the unitary operators, etc.

However, the numerical analysis of this integral is quite poor as pointed out by the seminal paper due to Michael Tortorella from 1990 [1]. Earlier results in this direction, however, were provided by Dubuc and Todor in their 1984 and 1987 papers [2, 3] and [4], respectively. For recent results concerning the approximation of the Riemann-Stieltjes integral, see the work of Diethelm [5], Liu [6], Mercer [7], Munteanu [8], Mozyrska et al. [9] and the references therein. For other recent results obtained in the same direction by the first author and his colleagues from RGMIA, see [1016] and [17]. A comprehensive list of preprints related to this subject may be found at http://​rgmia.​org.

In order to approximate the Riemann-Stieltjes integral a b p ( t ) d v ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq5_HTML.gif, where p , v : [ a , b ] R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq6_HTML.gif are functions for which the above integral exists, Dragomir established in [18] the following integral identity:
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ1_HTML.gif
(1.1)

provided that the involved integrals exist. In the particular case when u ( t ) = t http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq7_HTML.gif, t [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq8_HTML.gif, the above identity reduces to the celebrated Montgomery identity (see [[19], p.565]) that has been extensively used by many authors in obtaining various inequalities of Ostrowski type. For a comprehensive recent collection of works related to Ostrowski’s inequality, see the book [20], the papers [1012, 2132] and [33]. For other results concerning error bounds of quadrature rules related to midpoint and trapezoid rules, see [3445] and the references therein.

Motivated by the recent results from [18, 46, 47] (see also [11, 27] and [13]) in the present paper we investigate the problem of approximating the Riemann-Stieltjes integral a b f ( λ ) d u ( λ ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq9_HTML.gif in the case when the integrand f is n-times differentiable and the derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is either of locally bounded variation, or Lipschitzian on an interval incorporating [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif. A priori error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well.

2 Some representation results

In this section, we establish some representation results for the Riemann-Stieltjes integral when the integrand is n-times differentiable and the integrator is of locally bounded variation. Several particular cases of interest are considered as well.

Theorem 1 Assume that the function f : I C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq10_HTML.gif is n-times differentiable on the interior http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif of the interval I ( n 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq12_HTML.gif) and the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif . If http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq13_HTML.gif with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif, c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif and u : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq16_HTML.gif is of bounded variation on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then the Riemann-Stieltjes integral a b f ( λ ) d u ( λ ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq1_HTML.gif exists, we have the identity
a b f ( λ ) d u ( λ ) = T n ( f , u , a , c , b ) + R n ( f , u , a , c , b ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ2_HTML.gif
(2.1)
where
T n ( f , u , a , c , b ) : = k = 0 n 1 k ! f ( k ) ( c ) [ ( b c ) k u ( b ) + ( 1 ) k + 1 ( c a ) k u ( a ) ] k = 0 n 1 1 k ! f ( k + 1 ) ( c ) a b ( λ c ) k u ( λ ) d λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ3_HTML.gif
(2.2)
and the remainder R n ( f , u , a , c , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq17_HTML.gif can be represented as
R n ( f , u , a , c , b ) : = 1 n ! a b ( c λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ4_HTML.gif
(2.3)

Both integrals in (2.3) are taken in the Riemann-Stieltjes sense.

Proof

Under the assumption of the theorem, we utilize the following Taylor’s representation
f ( λ ) = k = 0 n 1 k ! f ( k ) ( c ) ( λ c ) k + 1 n ! c λ ( λ t ) n d f ( n ) ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ5_HTML.gif
(2.4)

that holds for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif and n 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq18_HTML.gif. The integral in (2.4) is taken in the Riemann-Stieltjes sense.

We can prove this equality by induction.

Indeed, for n = 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq19_HTML.gif, we have
f ( λ ) = f ( c ) + c λ d f ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equa_HTML.gif

that holds for any function of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif .

Now, assume that (2.4) is true for an n 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq18_HTML.gif and let us prove that it holds for ‘ n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq20_HTML.gif’, namely
f ( λ ) = k = 0 n + 1 1 k ! f ( k ) ( c ) ( λ c ) k + 1 ( n + 1 ) ! c λ ( λ t ) n + 1 d f ( n + 1 ) ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ6_HTML.gif
(2.5)

provided that the function f : I C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq10_HTML.gif is ( n + 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq21_HTML.gif-times differentiable on the interior http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif of the interval I and the ( n + 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq22_HTML.gif-th derivative f ( n + 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq23_HTML.gif is of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif .

Utilizing the integration by parts formula for the Riemann-Stieltjes integral and the reduction of the Riemann-Stieltjes integral to a Riemann integral (see, for instance, [48]) we have:
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ7_HTML.gif
(2.6)
From (2.4), we have that
c λ ( λ t ) n d f ( n ) ( t ) = [ f ( λ ) k = 0 n 1 k ! f ( k ) ( c ) ( λ c ) k ] n ! http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equb_HTML.gif
which inserted in the last part of (2.6) provides the equality
c λ ( λ t ) n + 1 d f ( n + 1 ) ( t ) = ( λ c ) n + 1 f ( n + 1 ) ( c ) + ( n + 1 ) ! [ f ( λ ) k = 0 n 1 k ! f ( k ) ( c ) ( λ c ) k ] . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ8_HTML.gif
(2.7)

We observe that, by division with ( n + 1 ) ! http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq24_HTML.gif, the equality (2.7) becomes the desired representation (2.5).

Further on, from the identity (2.4) we obtain
a b f ( λ ) d u ( λ ) = k = 0 n 1 k ! f ( k ) ( c ) a b ( λ c ) k d u ( λ ) + 1 n ! a b ( c λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ9_HTML.gif
(2.8)
Utilizing the integration by parts formula, we have for k 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq25_HTML.gif that
a b ( λ c ) k d u ( λ ) = ( λ c ) k u ( λ ) | a b k a b ( λ c ) k 1 u ( λ ) d λ = ( b c ) k u ( b ) + ( 1 ) k + 1 ( c a ) k u ( a ) k a b ( λ c ) k 1 u ( λ ) d λ . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ10_HTML.gif
(2.9)

For k = 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq26_HTML.gif, we have a b d u ( λ ) = u ( b ) u ( a ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq27_HTML.gif.

Therefore, by (2.9) we get
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ11_HTML.gif
(2.10)

and by (2.8) the representation (2.1) is thus obtained.

This completes the proof. □

Remark 1 Assume that the function f : I C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq10_HTML.gif is n-times differentiable on the interior http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif of the interval I ( n 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq12_HTML.gif) and the n th derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif . If http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq13_HTML.gif with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif and u : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq16_HTML.gif is of bounded variation on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then, by choosing c = a http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq28_HTML.gif in the formulae above we have
D n d ( f , u , a , b ) : = T n ( f , u , a , a , b ) = k = 0 n 1 k ! f ( k ) ( a ) ( b a ) k u ( b ) k = 0 n 1 1 k ! f ( k + 1 ) ( a ) a b ( λ a ) k u ( λ ) d λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ12_HTML.gif
(2.11)
and
R n d ( f , u , a , b ) : = R n ( f , u , a , a , b ) = 1 n ! a b ( a λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ13_HTML.gif
(2.12)
This give the representation
a b f ( λ ) d u ( λ ) = d D n ( f , u , a , b ) + d R n ( f , u , a , b ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ14_HTML.gif
(2.13)
Now, if we choose c = a + b 2 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq29_HTML.gif, then we have
M n ( f , u , a , b ) : = T n ( f , u , a , a + b 2 , b ) = k = 0 n 1 k ! 2 k f ( k ) ( a + b 2 ) ( b a ) k [ u ( b ) + ( 1 ) k + 1 u ( a ) ] k = 0 n 1 1 k ! f ( k + 1 ) ( a + b 2 ) a b ( λ a + b 2 ) k u ( λ ) d λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ15_HTML.gif
(2.14)
and
R n M ( f , u , a , b ) : = R n ( f , u , a , a + b 2 , b ) = 1 n ! a b ( a + b 2 λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ16_HTML.gif
(2.15)
which provide the representation
a b f ( λ ) d u ( λ ) = M n ( f , u , a , b ) + M R n ( f , u , a , b ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ17_HTML.gif
(2.16)
Finally, if we choose c = b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq30_HTML.gif, then we have
D n u ( f , u , a , b ) : = T n ( f , u , a , b , b ) = k = 0 n 1 k ! f ( k ) ( b ) ( 1 ) k + 1 ( b a ) k u ( a ) + k = 0 n 1 ( 1 ) k + 1 k ! f ( k + 1 ) ( b ) a b ( b λ ) k u ( λ ) d λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ18_HTML.gif
(2.17)
and the remainder
R n u ( f , u , a , b ) : = R n ( f , u , a , b , b ) = ( 1 ) n + 1 n ! a b ( λ b ( t λ ) n d f ( n ) ( t ) ) d u ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ19_HTML.gif
(2.18)
Making use of (2.1) we get
a b f ( λ ) d u ( λ ) = u D n ( f , u , a , b ) + u R n ( f , u , a , b ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ20_HTML.gif
(2.19)

3 Error bounds

In order to provide sharp error bounds in the approximation rules outlined above, we need the following well-known lemma concerning sharp estimates for the Riemann-Stieltjes integral for various pairs of integrands and integrators (see, for instance, [48]).

Lemma 1 Let p , v : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq31_HTML.gif two bounded functions on the compact interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif.
  1. (i)
    If p is continuous and v is of bounded variation, then the Riemann-Stieltjes integral a b p ( t ) d v ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq32_HTML.gif exists and
    | a b p ( t ) d v ( t ) | max t [ a , b ] | p ( t ) | a b ( v ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ21_HTML.gif
    (3.1)
     
where a b ( v ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq33_HTML.gif denotes the total variation of v on the interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif.
  1. (ii)
    If p is Riemann integrable and v is Lipschitzian with the constant L > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq34_HTML.gif, i.e.,
    | v ( t ) v ( s ) | L | t s | for each t , s [ a , b ] , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equc_HTML.gif
     
then the Riemann-Stieltjes integral a b p ( t ) d v ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq35_HTML.gif exists and
| a b p ( t ) d v ( t ) | L a b | p ( t ) | d t ( L sup t [ a , b ] | p ( t ) | ( b a ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ22_HTML.gif
(3.2)

All the above inequalities are sharp in the sense that there are examples of functions for which each equality case is realized.

Utilizing this result concerning bounds for the Riemann-Stieltjes integral, we can provide the following error bounds in approximating the integral a b f ( λ ) d u ( λ ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq36_HTML.gif.

Theorem 2 Assume that the function f : I C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq10_HTML.gif is n-times differentiable on the interior http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif of the interval I ( n 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq12_HTML.gif) and the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif . If http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq13_HTML.gif with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif, c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif and u : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq16_HTML.gif is of bounded variation on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then we have the representation (2.1), where the approximation term T n ( f , u , a , c , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq37_HTML.gif is given by (2.2) and the remainder R n ( f , u , a , c , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq38_HTML.gif satisfies the inequality
| R n ( f , u , a , c , b ) | 1 n ! [ 1 2 ( b a ) + | c a + b 2 | ] n a b ( f ( n ) ) a b ( u ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ23_HTML.gif
(3.3)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

If the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is Lipschitzian with the constant L n > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq39_HTML.gif on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then we have
| R n ( f , u , a , c , b ) | 1 ( n + 1 ) ! L n [ 1 2 ( b a ) + | c a + b 2 | ] n + 1 a b ( u ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ24_HTML.gif
(3.4)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Proof

Utilizing the property (i) from Lemma 1, we have successively
| R n ( f , u , a , c , b ) | = 1 n ! | a b ( c λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) | 1 n ! max λ [ a , b ] | c λ ( λ t ) n d f ( n ) ( t ) | a b ( u ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ25_HTML.gif
(3.5)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

For c , λ [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq40_HTML.gif, denote
B ( λ , c ) : = | c λ ( λ t ) n d f ( n ) ( t ) | . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ26_HTML.gif
(3.6)
By the property (i) from Lemma 1 applied for f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq41_HTML.gif we have for c < λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq42_HTML.gif that
B ( λ , c ) max t [ c , λ ] | λ t | n c λ ( f ( n ) ) = ( λ c ) n c λ ( f ( n ) ) ( λ c ) n a b ( f ( n ) ) ( b c ) n a b ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equd_HTML.gif
and for c > λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq43_HTML.gif that
B ( λ , c ) max t [ λ , c ] | λ t | n λ c ( f ( n ) ) = ( c λ ) n λ c ( f ( n ) ) ( c λ ) n a b ( f ( n ) ) ( c a ) n a b ( f ( n ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Eque_HTML.gif
Therefore,
max λ [ a , b ] B ( λ , c ) max { ( b c ) n , ( c a ) n } a b ( f ( n ) ) = [ max { b c , c a } ] n a b ( f ( n ) ) = [ 1 2 ( b a ) + | c a + b 2 | ] n a b ( f ( n ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ27_HTML.gif
(3.7)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Utilizing (3.5) and (3.7), we deduce the desired inequality (3.3).

By the property (ii) from Lemma 1 applied for f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq44_HTML.gif, we have that
B ( λ , c ) L n | c λ | λ t | n d t | = L n n + 1 | λ c | n + 1 , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equf_HTML.gif
c , λ [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq40_HTML.gif
, which produces the bound
max λ [ a , b ] B ( λ , c ) L n n + 1 max λ [ a , b ] | λ c | n + 1 = L n n + 1 max { ( b c ) n + 1 , ( c a ) n + 1 } = L n n + 1 [ max { b c , c a } ] n + 1 = L n n + 1 [ 1 2 ( b a ) + | c a + b 2 | ] n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ28_HTML.gif
(3.8)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Utilizing (3.5) and (3.8), we deduce the desired inequality (3.4). □

The best error bounds we can get from Theorem 2 are as follows.

Corollary 1 Under the assumptions of Theorem 2 we have the representation
a b f ( λ ) d u ( λ ) = M n ( f , u , a , b ) + M R n ( f , u , a , b ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ29_HTML.gif
(3.9)
where M n ( f , u , a , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq45_HTML.gif is defined in (2.14) and the error R n M ( f , u , a , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq46_HTML.gif satisfies the bound
| M R n ( f , u , a , b ) | 1 2 n n ! ( b a ) n a b ( f ( n ) ) a b ( u ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ30_HTML.gif
(3.10)
Moreover, if the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is Lipschitzian with the constant L n > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq39_HTML.gif on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then we have
| M R n ( f , u , a , b ) | 1 2 n + 1 ( n + 1 ) ! L n ( b a ) n + 1 a b ( u ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ31_HTML.gif
(3.11)

The case of Lipschitzian integrators may be of interest as well and will be considered in the following.

Theorem 3 Assume that the function f : I C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq10_HTML.gif is n-times differentiable on the interior http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif of the interval I ( n 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq12_HTML.gif) and the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is of locally bounded variation on http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq11_HTML.gif . If http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq13_HTML.gif with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif, c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif and u : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq16_HTML.gif is Lipschitzian on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif with the constant K > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq47_HTML.gif then we have the representation (2.1), where the approximation term T n ( f , u , a , c , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq48_HTML.gif is given by (2.2) and the remainder R n ( f , u , a , c , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq38_HTML.gif satisfies the inequality
| R n ( f , u , a , c , b ) | 1 n ! K a b | λ c | n | c λ ( f ( n ) ) | d λ 1 ( n + 1 ) ! K [ ( b c ) n + 1 + ( c a ) n + 1 ] a b ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ32_HTML.gif
(3.12)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

If the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is Lipschitzian with the constant L n > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq39_HTML.gif on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then we have
| R n ( f , u , a , c , b ) | 1 ( n + 2 ) ! K L n [ ( b c ) n + 2 + ( c a ) n + 2 ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ33_HTML.gif
(3.13)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Proof

Utilizing the property (ii) from Lemma 1, we have successively
| R n ( f , u , a , c , b ) | = 1 n ! | a b ( c λ ( λ t ) n d f ( n ) ( t ) ) d u ( λ ) | 1 n ! K a b | c λ ( λ t ) n d f ( n ) ( t ) | d λ = 1 n ! K a b B ( λ , c ) d λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ34_HTML.gif
(3.14)

for any c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif, where as above B ( λ , c ) : = | c λ ( λ t ) n d f ( n ) ( t ) | http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq49_HTML.gif, for c , λ [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq40_HTML.gif.

By the property (i) from Lemma 1 applied for f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq41_HTML.gif, we have for c < λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq42_HTML.gif that
B ( λ , c ) max t [ c , λ ] | λ t | n c λ ( f ( n ) ) = ( λ c ) n c λ ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equg_HTML.gif
and for c > λ http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq43_HTML.gif that
B ( λ , c ) max t [ λ , c ] | λ t | n λ c ( f ( n ) ) = ( c λ ) n λ c ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equh_HTML.gif
which gives that
B ( λ , c ) | λ c | n | c λ ( f ( n ) ) | | λ c | n a b ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equi_HTML.gif

for c , λ [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq40_HTML.gif.

This implies that
a b B ( λ , c ) d λ a b | λ c | n | c λ ( f ( n ) ) | d λ a b ( f ( n ) ) a b | λ c | n d λ = 1 n + 1 [ ( b c ) n + 1 + ( c a ) n + 1 ] a b ( f ( n ) ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ35_HTML.gif
(3.15)

for c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Making use of (3.14) and (3.15) we deduce the desired inequality (3.12).

By the property (ii) from Lemma 1 applied for f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq44_HTML.gif we have that
B ( λ , c ) L n | c λ | λ t | n d t | = L n n + 1 | λ c | n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equj_HTML.gif
c , λ [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq40_HTML.gif
, which produces the bound
a b B ( λ , c ) d λ L n n + 1 a b | λ c | n + 1 d λ = L n ( n + 1 ) ( n + 2 ) [ ( b c ) n + 2 + ( c a ) n + 2 ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ36_HTML.gif
(3.16)

for c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Utilizing (3.14) and (3.16), we deduce the desired inequality (3.13). □

The following particular case provides the best error bounds.

Corollary 2 Under the assumptions of Theorem 3, we have the representation (3.9), where M n ( f , u , a , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq45_HTML.gif is defined in (2.14) and the error R n M ( f , u , a , b ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq46_HTML.gif satisfies the bound
| M R n ( f , u , a , b ) | 1 n ! K a b | λ a + b 2 | n | a + b 2 λ ( f ( n ) ) | d λ 1 2 n ( n + 1 ) ! K ( b a ) n + 1 a b ( f ( n ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ37_HTML.gif
(3.17)
Moreover, if the nth derivative f ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq2_HTML.gif is Lipschitzian with the constant L n > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq39_HTML.gif on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif, then we have
| M R n ( f , u , a , b ) | 1 2 n + 1 ( n + 2 ) ! K L n ( b a ) n + 2 . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ38_HTML.gif
(3.18)

4 Applications

  1. 1.
    We consider the following finite Laplace-Stieltjes transform defined by
    ( L [ a , b ] g ) ( s ) : = a b e s t d g ( t ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ39_HTML.gif
    (4.1)
     

where a , b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq50_HTML.gif are real numbers with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif, s is a complex number and g : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq51_HTML.gif is a function of bounded variation.

It is important to notice that, in the particular case g ( t ) = t , t [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq52_HTML.gif, (4.1) becomes the finite Laplace transform which has various applications in other fields of Mathematics; see, for instance, [25, 26, 4951] and [52] and the references therein. Therefore, any approximation of the more general finite Laplace-Stieltjes transform can be used for the particular case of finite Laplace transform.

Since the function f s : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq53_HTML.gif, f s ( t ) : = e s t http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq54_HTML.gif is continuous for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif, the transform (4.1) is well defined for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif.

We observe that the function f s http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq56_HTML.gif has derivatives of all orders and
f s ( k ) ( t ) = ( 1 ) k s k e s t for any  s C , t [ a , b ]  and  k 0 . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ40_HTML.gif
(4.2)
We also observe that
f s ( n + 1 ) [ a , b ] , : = sup t [ a , b ] | f s ( n + 1 ) ( t ) | = | s | n + 1 sup t [ a , b ] | e s t | = | s | n + 1 sup t [ a , b ] e t Re s = | s | n + 1 × { e a Re s if  Re s 0 , e b Re s if  Re s < 0 . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equk_HTML.gif
To simplify the notations, we denote by
β [ a , b ] ( s ) : = { e a Re s if  Re s 0 , e b Re s if  Re s < 0 . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ41_HTML.gif
(4.3)
On utilizing Theorem 1, we have the representation
( L [ a , b ] g ) ( s ) = G n ( g , a , c , b ) ( s ) + Z n ( g , a , c , b ) ( s ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ42_HTML.gif
(4.4)
where
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ43_HTML.gif
(4.5)
and the remainder Z n ( g , a , c , b ) ( s ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq57_HTML.gif can be represented as
Z n ( g , a , c , b ) ( s ) : = ( 1 ) n + 1 n ! s n + 1 a b ( c λ ( λ t ) n e s t d t ) d g ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ44_HTML.gif
(4.6)

Here, s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif and c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Since g is of bounded variation on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif and the derivative f s ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq58_HTML.gif is Lipschitzian with the constant
L n : = f s ( n + 1 ) [ a , b ] , = | s | n + 1 β [ a , b ] ( s ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equl_HTML.gif
then by Theorem 2 we have the bound
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ45_HTML.gif
(4.7)

for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif and c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

As above, the best approximation we can get from (4.4) is for c = a + b 2 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq29_HTML.gif, namely, we have the representation
( L [ a , b ] g ) ( s ) = M G n ( g , a , b ) ( s ) + M Z n ( g , a , b ) ( s ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ46_HTML.gif
(4.8)
where
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ47_HTML.gif
(4.9)
and the remainder Z n M ( g , a , b ) ( s ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq59_HTML.gif can be represented as
Z n M ( g , a , b ) ( s ) : = ( 1 ) n + 1 n ! s n + 1 a b ( a + b 2 λ ( λ t ) n e s t d t ) d g ( λ ) . http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ48_HTML.gif
(4.10)
The error Z n M ( g , a , b ) ( s ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq60_HTML.gif satisfies the bound
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ49_HTML.gif
(4.11)

for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif.

Now, if we restrict the function g to belong to the class of Lipschitzian functions with the constant K > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq47_HTML.gif on the interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq61_HTML.gif, then the error in the representation (4.4) will satisfy the bound
| Z n ( g , a , c , b ) ( s ) | 1 ( n + 2 ) ! K | s | n + 1 β [ a , b ] ( s ) [ ( b c ) n + 2 + ( c a ) n + 2 ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equm_HTML.gif

for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif and c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Finally, the error Z n M ( g , a , b ) ( s ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq59_HTML.gif from the representation (4.8) satisfies the inequality
| M Z n ( g , a , b ) ( s ) | 1 2 n + 1 ( n + 2 ) ! K | s | n + 1 β [ a , b ] ( s ) ( b a ) n + 2 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equn_HTML.gif
for any s C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq55_HTML.gif.
  1. 2.
    We consider now the finite Fourier-Stieltjes sine and cosine transforms defined by
    ( F s , [ a , b ] g ) ( u ) : = a b sin ( u t ) d g ( t ) , ( F c , [ a , b ] g ) ( u ) : = a b cos ( u t ) d g ( t ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ50_HTML.gif
    (4.12)
     

where a, b are real numbers with a < b http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq14_HTML.gif, u is a real number and g : [ a , b ] C http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq62_HTML.gif is a function of bounded variation.

Since the functions f s ; u , f c ; u : [ a , b ] R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq63_HTML.gif, f s ; u ( t ) : = sin ( u t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq64_HTML.gif, f c ; u ( t ) : = cos ( u t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq65_HTML.gif are continuous for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif, the transforms (4.12) are well defined for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif.

Utilizing the well-known formulae for the n th derivatives of sine and cosine functions, namely,
if  y = sin ( A x + B )  then  d n y d x n = A n sin ( A x + B n π 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equo_HTML.gif
and
if  y = cos ( A x + B )  then  d n y d x n = A n cos ( A x + B n π 2 ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equp_HTML.gif
then we have
f s ; u ( k ) ( t ) = u k sin ( u t k π 2 ) and f c ; u ( k ) ( t ) = u k cos ( u t k π 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equq_HTML.gif

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif and k 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq67_HTML.gif.

We observe that, in general, we have the bounds
f s ; u ( n + 1 ) [ a , b ] , = sup t [ a , b ] | u n + 1 sin ( u t ( n + 1 ) π 2 ) | | u | n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equr_HTML.gif
and
f c ; u ( n + 1 ) [ a , b ] , = sup t [ a , b ] | u n + 1 cos ( u t ( n + 1 ) π 2 ) | | u | n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equs_HTML.gif

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif, the closed interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif and n 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq18_HTML.gif.

On utilizing Theorem 1, we have the representation
( F s , [ a , b ] g ) ( u ) = K s , n ( g , a , c , b ) ( u ) + W s , n ( g , a , c , b ) ( u ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ51_HTML.gif
(4.13)
where
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ52_HTML.gif
(4.14)
and the remainder W s , n ( g , a , c , b ) ( u ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq68_HTML.gif can be represented as
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ53_HTML.gif
(4.15)
Since g is of bounded variation on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq3_HTML.gif and the derivative f s ( n ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq58_HTML.gif is Lipschitzian with the constant
L n : = f s ( n + 1 ) [ a , b ] , | u | n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equt_HTML.gif
then by Theorem 2 we have the bound
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ54_HTML.gif
(4.16)

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif and c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

As above, the best approximation we can get from (4.4) is for c = a + b 2 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq29_HTML.gif, namely, we have the representation
( F s , [ a , b ] g ) ( u ) = M K s , n ( g , a , b ) ( u ) + M W s , n ( g , a , b ) ( u ) , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ55_HTML.gif
(4.17)
where
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ56_HTML.gif
(4.18)
and the remainder W s , n M ( g , a , b ) ( u ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq69_HTML.gif can be represented as
http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ57_HTML.gif
(4.19)

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif.

Here, the error satisfies the bound
| M W s , n ( g , a , b ) ( u ) | 1 2 n + 1 ( n + 1 ) ! | u | n + 1 ( b a ) n + 1 a b ( g ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ58_HTML.gif
(4.20)

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif.

Now, if we restrict the function g to belong to the class of Lipschitzian functions with the constant K > 0 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq47_HTML.gif on the interval [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq61_HTML.gif, then the error in the representation (4.17) will satisfy the bound:
| W s , n ( g , a , c , b ) ( u ) | 1 ( n + 2 ) ! K | u | n + 1 [ ( b c ) n + 2 + ( c a ) n + 2 ] , http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ59_HTML.gif
(4.21)

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif and c [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq15_HTML.gif.

Finally, the error from the representation (4.17) satisfies the inequality
| M W s , n ( g , a , b ) ( u ) | 1 2 n + 1 ( n + 2 ) ! K | u | n + 1 ( b a ) n + 2 http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_Equ60_HTML.gif
(4.22)

for any u R http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq66_HTML.gif.

Similar results may be stated for the finite Fourier-Stieltjes cosine transform, however the details are left to the interested reader.

Declarations

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The authors would like to thank the anonymous referees for the valuable suggestions that have been incorporated in the final version of the paper.

Authors’ Affiliations

(1)
School of Computational & Applied Mathematics, University of the Witwatersrand
(2)
Mathematics, College of Engineering & Science, Victoria University

References

  1. Tortorella M: Closed Newton-Cotes quadrature rules for Stieltjes integrals and numerical convolution of life distributions. SIAM J. Sci. Stat. Comput. 1990, 11(4):732–748. 10.1137/0911043MathSciNetView Article
  2. Dubuc S, Todor F: La règle du trapèze pour l’intégrale de Riemann-Stieltjes. I. Ann. Sci. Math. Qué. 1984, 8(2):135–140. (French) [The trapezoid formula for the Riemann-Stieltjes integral. I].MathSciNet
  3. Dubuc S, Todor F: La règle du trapèze pour l’intégrale de Riemann-Stieltjes. II. Ann. Sci. Math. Qué. 1984, 8(2):141–153. (French) [The trapezoid formula for the Riemann-Stieltjes integral. II].MathSciNet
  4. Dubuc S, Todor F: La règle optimale du trapèze pour l’intégrale de Riemann-Stieltjes d’une fonction donnée. C. R. Math. Rep. Acad. Sci. Canada 1987, 9(5):213–218. (French) [The optimal trapezoidal rule for the Riemann-Stieltjes integral of a given function].MathSciNet
  5. Diethelm K: A note on the midpoint rectangle formula for Riemann-Stieltjes integrals. J. Stat. Comput. Simul. 2004, 74(12):920–922.MathSciNet
  6. Liu Z: Refinement of an inequality of Grüss type for Riemann-Stieltjes integral. Soochow J. Math. 2004, 30(4):483–489.MathSciNet
  7. Mercer PR: Hadamard’s inequality and trapezoid rules for the Riemann-Stieltjes integral. J. Math. Anal. Appl. 2008, 344(2):921–926. 10.1016/j.jmaa.2008.03.026MathSciNetView Article
  8. Munteanu M: Quadrature formulas for the generalized Riemann-Stieltjes integral. Bull. Braz. Math. Soc. 2007, 38(1):39–50. 10.1007/s00574-007-0034-5MathSciNetView Article
  9. Mozyrska D, Pawluszewicz E, Torres DFM: The Riemann-Stieltjes integral on time scales. Aust. J. Math. Anal. Appl. 2010., 7(1): Article ID 10
  10. Barnett NS, Cerone P, Dragomir SS: Majorisation inequalities for Stieltjes integrals. Appl. Math. Lett. 2009, 22: 416–421. 10.1016/j.aml.2008.06.009MathSciNetView Article
  11. Barnett NS, Cheung W-S, Dragomir SS, Sofo A: Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators. Comput. Math. Appl. 2009, 57: 195–201. 10.1016/j.camwa.2007.07.021MathSciNetView Article
  12. Barnett NS, Dragomir SS: The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral. Appl. Math. Lett. 2009, 22: 58–63. 10.1016/j.aml.2008.02.005MathSciNetView Article
  13. Cerone P, Cheung W-S, Dragomir SS: On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation. Comput. Math. Appl. 2007, 54: 183–191. 10.1016/j.camwa.2006.12.023MathSciNetView Article
  14. Cerone P, Dragomir SS: Bounding the Čebyšev functional for the Riemann Stieltjes integral via a Beesack inequality and applications. Comput. Math. Appl. 2009, 58: 1247–1252. 10.1016/j.camwa.2009.07.029MathSciNetView Article
  15. Cerone P, Dragomir SS: Approximating the Riemann Stieltjes integral via some moments of the integrand. Math. Comput. Model. 2009, 49: 242–248. 10.1016/j.mcm.2008.02.011MathSciNetView Article
  16. Dragomir SS: Approximating the Riemann Stieltjes integral in terms of generalised trapezoidal rules. Nonlinear Anal. 2009, 71: e62-e72. 10.1016/j.na.2008.10.004View Article
  17. Dragomir SS: Inequalities for Stieltjes integrals with convex integrators and applications. Appl. Math. Lett. 2007, 20: 123–130. 10.1016/j.aml.2006.02.027MathSciNetView Article
  18. Dragomir SS: On the Ostrowski’s inequality for Riemann-Stieltjes integral. Korean J. Comput. Appl. Math. 2000, 7: 477–485.MathSciNet
  19. Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht; 1991.View Article
  20. Dragomir SS, Rassias TM (Eds): Ostrowski Type Inequalities and Applications in Numerical Integration. Kluwer Academic, Dordrecht; 2002.
  21. Anastassiou AG: Univariate Ostrowski inequalities, revisited. Monatshefte Math. 2002, 135(3):175–189. 10.1007/s006050200015MathSciNetView Article
  22. Anastassiou AG: Ostrowski type inequalities. Proc. Am. Math. Soc. 1995, 123(12):3775–3781. 10.1090/S0002-9939-1995-1283537-3MathSciNetView Article
  23. Aglić-Aljinović A, Pečarić J: On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula. Tamkang J. Math. 2005, 36(3):199–218.MathSciNet
  24. Aglić-Aljinović A, Pečarić J, Vukelić A: On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II. Tamkang J. Math. 2005, 36(4):279–301.MathSciNet
  25. Bertero M, Grünbaum FA: Commuting differential operators for the finite Laplace transform. Inverse Probl. 1985, 1(3):181–192. 10.1088/0266-5611/1/3/004View Article
  26. Bertero M, Grünbaum FA, Rebolia L: Spectral properties of a differential operator related to the inversion of the finite Laplace transform. Inverse Probl. 1986, 2(2):131–139. 10.1088/0266-5611/2/2/006View Article
  27. Cheung W-S, Dragomir SS: Two Ostrowski type inequalities for the Stieltjes integral of monotonic functions. Bull. Aust. Math. Soc. 2007, 75(2):299–311. 10.1017/S0004972700039228MathSciNetView Article
  28. Cerone P: Approximate multidimensional integration through dimension reduction via the Ostrowski functional. Nonlinear Funct. Anal. Appl. 2003, 8(3):313–333.MathSciNet
  29. Cerone P, Dragomir SS: On some inequalities arising from Montgomery’s identity. J. Comput. Anal. Appl. 2003, 5(4):341–367.MathSciNet
  30. Kumar P: The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables. Comput. Math. Appl. 2005, 49(11–12):1929–1940. 10.1016/j.camwa.2003.11.002MathSciNetView Article
  31. Pachpatte BG: A note on Ostrowski like inequalities. J. Inequal. Pure Appl. Math. 2005., 6(4): Article ID 114
  32. Sofo A: Integral inequalities for N -times differentiable mappings. In Ostrowski Type Inequalities and Applications in Numerical Integration. Kluwer Academic, Dordrecht; 2002:65–139.View Article
  33. Ujević N: Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48(1–2):145–151. 10.1016/j.camwa.2003.09.026MathSciNetView Article
  34. Dragomir SS: Ostrowski’s inequality for montonous mappings and applications. J. KSIAM 1999, 3(1):127–135.
  35. Dragomir SS: Some inequalities for Riemann-Stieltjes integral and applications. In Optimization and Related Topics. Edited by: Rubinov A, Glover B. Kluwer Academic, Dordrecht; 2001:197–235.View Article
  36. Dragomir, SS: Accurate approximations of the Riemann-Stieltjes integral with ( l , L ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq70_HTML.gif-Lipschitzian integrators. In: Simos, TH, et al. (eds.) AIP Conf. Proc. 939, Numerical Anal. & Appl. Math., pp. 686–690. Preprint RGMIA Res. Rep. Coll. 10(3), Article ID 5 (2007). Online http://​rgmia.​vu.​edu.​au/​v10n3.​html
  37. Dragomir SS: Accurate approximations for the Riemann-Stieltjes integral via theory of inequalities. J. Math. Inequal. 2009, 3(4):663–681.MathSciNetView Article
  38. Dragomir, SS: Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications. Math. Comput. Model. (in Press). Corrected Proof, Available online 18 February 2011
  39. Dragomir SS, Buşe C, Boldea MV, Brăescu L: A generalisation of the trapezoidal rule for the Riemann-Stieltjes integral and applications. Nonlinear Anal. Forum 2001, 6(2):337–351.MathSciNet
  40. Dragomir SS, Cerone P, Roumeliotis J, Wang S: A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis. Bull. Math. Soc. Sci. Math. Roum. 1999, 42(90)(4):301–314.MathSciNet
  41. Dragomir SS, Fedotov I: An inequality of Grüss type for the Riemann-Stieltjes integral and applications for special means. Tamkang J. Math. 1998, 29(4):287–292.MathSciNet
  42. Dragomir SS, Fedotov I: A Grüss type inequality for mappings of bounded variation and applications to numerical analysis. Nonlinear Funct. Anal. Appl. 2001, 6(3):425–433.MathSciNet
  43. Pachpatte BG: A note on a trapezoid type integral inequality. Bull. Greek Math. Soc. 2004, 49: 85–90.MathSciNet
  44. Ujević N: Error inequalities for a generalized trapezoid rule. Appl. Math. Lett. 2006, 19(1):32–37. 10.1016/j.aml.2005.03.005MathSciNetView Article
  45. Wu Q, Yang S: A note to Ujević’s generalization of Ostrowski’s inequality. Appl. Math. Lett. 2005, 18(6):657–665. 10.1016/j.aml.2004.08.010MathSciNetView Article
  46. Dragomir SS: On the Ostrowski inequality for Riemann-Stieltjes integral a b f ( t ) d u ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-154/MediaObjects/13660_2012_Article_639_IEq71_HTML.gif , where f is of Hölder type and u is of bounded variation and applications. J. KSIAM 2001, 5(1):35–45.
  47. Cerone P, Dragomir SS, et al.: New bounds for the three-point rule involving the Riemann-Stieltjes integral. In Advances in Statistics, Combinatorics and Related Areas. Edited by: Gulati C. World Scientific, Singapore; 2002:53–62.View Article
  48. Apostol TM: Mathematical Analysis. 2nd edition. Addison-Wesley, Reading; 1975.
  49. Miletic J: A finite Laplace transform method for the solution of a mixed boundary value problem in the theory of elasticity. J. M éc. Appl. 1980, 4(4):407–419.MathSciNet
  50. Rutily B, Chevallier L: The finite Laplace transform for solving a weakly singular integral equation occurring in transfer theory. J. Integral Equ. Appl. 2004, 16(4):389–409. 10.1216/jiea/1181075298MathSciNetView Article
  51. Valbuena M, Galue L, Ali I: Some properties of the finite Laplace transform. In Transform Methods & Special Functions, Varna ’96. Bulgarian Acad. Sci., Sofia; 1998:517–522.
  52. Watanabe K, Ito M: A necessary condition for spectral controllability of delay systems on the basis of finite Laplace transforms. Int. J. Control 1984, 39(2):363–374. 10.1080/00207178408933171MathSciNetView Article

Copyright

© Dragomir and Abelman; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.