## Journal of Inequalities and Applications

Impact Factor 0.791

Open Access

# On some new inequalities for differentiable co-ordinated convex functions

Journal of Inequalities and Applications20122012:28

DOI: 10.1186/1029-242X-2012-28

Received: 13 October 2011

Accepted: 15 February 2012

Published: 15 February 2012

## Abstract

Several new inequalities for differentiable co-ordinated convex and concave functions in two variables which are related to the left side of Hermite- Hadamard type inequality for co-ordinated convex functions in two variables are obtained.

Mathematics Subject Classification (2000): 26A51; 26D15

### Keywords

convex function co-ordinated convex function Hermite-Hadamard's inequality Jensen's integral inequality

## 1. Introduction

The following definition is well known in literature:

A function f: $I\to ℝ,0̸\ne I\subseteq ℝ$, is said to be convex on I if the inequality
$f\left(\lambda x+\left(1-\lambda \right)y\right)\le \lambda f\left(x\right)+\left(1-\lambda \right)f\left(y\right),$

holds for all x, y I and λ [0, 1].

Many important inequalities have been established for the class of convex functions, but the most famous is the Hermite-Hadamard's inequality (see for instance [1]). This double inequality is stated as:
$f\left(\frac{a+b}{2}\right)\le \frac{1}{b-a}\underset{a}{\overset{b}{\int }}f\left(x\right)dx\le \frac{f\left(a\right)+f\left(b\right)}{2},$
(1.1)

where f:$I\to ℝ,0̸\ne I\subseteq ℝ$ a convex function, a, b I with a < b. The inequalities in (1.1) are in reversed order if f is a concave function.

The inequalities (1.1) have become an important cornerstone in mathematical analysis and optimization and many uses of these inequalities have been discovered in a variety of settings. Moreover, many inequalities of special means can be obtained for a particular choice of the function f. Due to the rich geometrical significance of Hermite-Hadamard's inequality (1.1), there is growing literature providing its new proofs, extensions, refinements and generalizations, see for example [25] and the references therein.

Let us consider now a bidimensional interval Δ =: [a, b] × [c, d] in 2 with a < b and c < d, a mapping f: Δ → is said to be convex on Δ if the inequality
$f\left(\lambda x+\left(1-\lambda \right)z,\lambda y+\left(1-\lambda \right)w\right)\le \lambda f\left(x,y\right)+\left(1-\lambda \right)f\left(z,w\right),$

holds for all (x, y), (z, w) Δ and λ [0, 1].

A modification for convex functions on Δ, which are also known as co-ordinated convex functions, was introduced by Dragomir [6, 7] as follows:

A function f: Δ → is said to be convex on the co-ordinates on Δ if the partial mappings f y : [a, b] → , f y (u) = f(u, y) and f x : [c, d] → , f x (v) = f(x, v) are convex where defined for all x [a, b], y [c, d].

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1. [8] A function f: Δ → is said to be convex on the co-ordinates on Δ if the inequality
$\begin{array}{c}f\left(tx+\left(1-t\right)y,su+\left(1-s\right)w\right)\\ \phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\le ts\phantom{\rule{2.77695pt}{0ex}}f\left(x,u\right)+t\left(1-s\right)f\left(x,w\right)+s\left(1-t\right)f\left(y,u\right)+\left(1-t\right)\left(1-s\right)f\left(y,w\right),\end{array}$

holds for all t, s [0, 1] and (x, u), (y, w) Δ.

Clearly, every convex mapping f: Δ → is convex on the co-ordinates. Furthermore, there exists co-ordinated convex function which is not convex, (see for example [6, 7]). For recent results on co-ordinated convex functions we refer the interested reader to [6, 813].

The following Hermite-Hadamrd type inequality for co-ordinated convex functions on the rectangle from the plane 2 was also proved in [6]:

Theorem 1. [6] Suppose that f: Δ → is co-ordinated convex on Δ. Then one has the inequalities:
(1.2)

The above inequalities are sharp.

In a recent article [13], Sarikaya et al. proved some new inequalities that give estimate of the difference between the middle and the rightmost terms in (1.2) for differentiable co-ordinated convex functions on rectangle from the plane 2. Motivated by notion given in [13], in the present article, we prove some new inequalities which give estimate between the middle and the leftmost terms in (1.2) for differentiable co-ordinated convex functions on rectangle from the plane 2.

## 2. Main results

The following lemma is necessary and plays an important role in establishing our main results:

Lemma 1. Let f: Δ 2 be a partial differentiable mapping on Δ: = [a, b] × [c, d] with a < b, c < d. If $\frac{{\partial }^{2}f}{\partial s\partial t}\in L\left(\mathrm{\Delta }\right)$, then the following identity holds:
$\begin{array}{c}\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)\\ -\frac{1}{b-a}\underset{a}{\overset{b}{\int }}f\left(x,\frac{c+d}{2}\right)dx-\frac{1}{d-c}\underset{c}{\overset{d}{\int }}f\left(\frac{a+b}{2},y\right)dy\\ =\left(b-a\right)\left(d-c\right)\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}K\left(t,s\right)\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt,\end{array}$
(2.1)
where
$K\left(t,s\right)=\left\{\begin{array}{cc}ts,\hfill & \left(t,s\right)\in \left[0,\frac{1}{2}\right]×\left[0,\frac{1}{2}\right]\hfill \\ t\left(s-1\right),\hfill & \left(t,s\right)\in \left[0,\frac{1}{2}\right]×\left(\frac{1}{2},1\right]\hfill \\ s\left(t-1\right),\hfill & \left(t,s\right)\in \left(\frac{1}{2},1\right]×\left[0,\frac{1}{2}\right]\hfill \\ \left(t-1\right)\left(s-1\right),\hfill & \left(t,s\right)\in \left(\frac{1}{2},1\right]×\left(\frac{1}{2},1\right]\hfill \end{array}\right\$
Proof. Since
$\begin{array}{c}\left(b-a\right)\left(d-c\right)\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}K\left(t,s\right)\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt\\ =\left(b-a\right)\left(d-c\right)\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}ts\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt\\ +\left(b-a\right)\left(d-c\right)\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}t\left(s-1\right)\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt\\ +\left(b-a\right)\left(d-c\right)\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}s\left(t-1\right)\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt\\ +\left(b-a\right)\left(d-c\right)\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}\left(t-1\right)\left(s-1\right)\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt\\ ={I}_{1}+{I}_{2}+{I}_{3}+{I}_{4}.\end{array}$
(2.2)
Now by integration by parts, we have
$\begin{array}{ll}\hfill {I}_{1}& =\left(b-a\right)\left(d-c\right)\underset{0}{\overset{\frac{1}{2}}{\int }}t\left[\underset{0}{\overset{\frac{1}{2}}{\int }}s\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)ds\right]dt\phantom{\rule{2em}{0ex}}\\ =\frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-\frac{1}{2}\underset{0}{\overset{\frac{1}{2}}{\int }}f\left(ta+\left(1-t\right)b,\frac{c+d}{2}\right)dt\phantom{\rule{2em}{0ex}}\\ -\frac{1}{2}\underset{0}{\overset{\frac{1}{2}}{\int }}f\left(\frac{a+b}{2},sc+\left(1-s\right)d\right)ds+\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)dsdt.\phantom{\rule{2em}{0ex}}\end{array}$
(2.3)
If we make use of the substitutions x = ta + (1 - t)b and y = sc + (1 - s)d, (t, s) [0, 1]2, in (2.3), we observe that
$\begin{array}{ll}\hfill {I}_{1}& =\frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-\frac{1}{2\left(b-a\right)}\underset{\frac{a+b}{2}}{\overset{b}{\int }}f\left(x,\frac{c+d}{2}\right)dx\phantom{\rule{2em}{0ex}}\\ -\frac{1}{2\left(d-c\right)}\underset{\frac{c+d}{2}}{\overset{d}{\int }}f\left(\frac{a+b}{2},y\right)dy+\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{\frac{a+b}{2}}{\overset{b}{\int }}\underset{\frac{c+d}{2}}{\overset{d}{\int }}f\left(x,y\right)dydx.\phantom{\rule{2em}{0ex}}\end{array}$
Similarly, by integration by parts, we also have that
$\begin{array}{ll}\hfill {I}_{2}& =\frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-\frac{1}{2\left(b-a\right)}\underset{\frac{a+b}{2}}{\overset{b}{\int }}f\left(x,\frac{c+d}{2}\right)dx\phantom{\rule{2em}{0ex}}\\ -\frac{1}{2\left(d-c\right)}\underset{c}{\overset{\frac{c+d}{2}}{\int }}f\left(\frac{a+b}{2},y\right)dy+\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{\frac{a+b}{2}}{\overset{b}{\int }}\underset{c}{\overset{\frac{c+d}{2}}{\int }}f\left(x,y\right)dydx,\phantom{\rule{2em}{0ex}}\\ \hfill {I}_{3}& =\frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-\frac{1}{2\left(b-a\right)}\underset{a}{\overset{\frac{a+b}{2}}{\int }}f\left(x,\frac{c+d}{2}\right)dx\phantom{\rule{2em}{0ex}}\\ -\frac{1}{2\left(d-c\right)}\underset{\frac{c+d}{2}}{\overset{d}{\int }}f\left(\frac{a+b}{2},y\right)dy+\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{\frac{a+b}{2}}{\int }}\underset{\frac{c+d}{2}}{\overset{d}{\int }}f\left(x,y\right)dydx\phantom{\rule{2em}{0ex}}\end{array}$
and
$\begin{array}{ll}\hfill {I}_{4}& =\frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-\frac{1}{2\left(b-a\right)}\underset{a}{\overset{\frac{a+b}{2}}{\int }}f\left(x,\frac{c+d}{2}\right)dx\phantom{\rule{2em}{0ex}}\\ -\frac{1}{2\left(d-c\right)}\underset{c}{\overset{\frac{c+d}{2}}{\int }}f\left(\frac{a+b}{2},y\right)dy+\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{\frac{a+b}{2}}{\int }}\underset{c}{\overset{\frac{c+d}{2}}{\int }}f\left(x,y\right)dydx.\phantom{\rule{2em}{0ex}}\end{array}$

Substitution of the I1, I2, I3, and I4 in (2.2) gives the desired identity (2.1).

Theorem 2. Let f: Δ 2 be a partial differentiable mapping on Δ:= [a, b] × [c, d] with a < b, c < d. If $\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|$ is convex on the co-ordinates on Δ, then the following inequality holds:
$\begin{array}{l}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\phantom{\rule{2em}{0ex}}\\ \le \frac{\left(b-a\right)\left(d-c\right)}{16}\left[\frac{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)\right|+\left|\frac{{\partial }^{2}}{\partial s\partial t}t\left(a,d\right)\right|+\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)\right|+\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)\right|}{4}\right],\phantom{\rule{2em}{0ex}}\end{array}$
(2.4)
where
$A=\frac{1}{b-a}\underset{a}{\overset{b}{\int }}f\left(x,\frac{c+d}{2}\right)dx+\frac{1}{d-c}\underset{c}{\overset{d}{\int }}f\left(\frac{a+b}{2},y\right)dy.$
Proof. From Lemma 1, we have
$\begin{array}{l}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\phantom{\rule{2em}{0ex}}\\ \le \left(b-a\right)\left(d-c\right)\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\phantom{\rule{2em}{0ex}}\end{array}$
(2.5)
Since $\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|$ is convex on the co-ordinates on Δ, we have
$\begin{array}{l}\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|\le ts\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)\right|+t\left(1-s\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)\right|\phantom{\rule{2em}{0ex}}\\ +s\left(1-t\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)\right|+\left(1-t\right)\left(1-s\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)\right|.\phantom{\rule{2em}{0ex}}\end{array}$
(2.6)
Substitution of (2.6) in (2.5) gives the following inequality:
(2.7)

Evaluating each integral in (2.7) and simplifying, we get (2.4). Hence the proof of the theorem is complete.

Theorem 3. Let f: Δ 2 be a partial differentiable mapping on Δ: = [a, b] × [c, d] with a < b, c < d. If ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ is convex on the co-ordinates on Δ and p, q > 1, $\frac{1}{p}+\frac{1}{q}=1$, then the followin g inequality holds:
$\begin{array}{c}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{a}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\\ \le \frac{\left(b-a\right)\left(d-c\right)}{4{\left(p+1\right)}^{\frac{2}{p}}}{\left[\frac{{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(a,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(a,d\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(b,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(b,d\right)\right|}^{q}}{4}\right]}^{\frac{1}{q}},\end{array}$
(2.8)

where A is as given in Theorem 2.

Proof. From Lemma 1, we have
$\begin{array}{c}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\\ \le \left(b-a\right)\left(d-c\right)\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt.\end{array}$
(2.9)
Now using the well-known Hölder inequality for double integrals, we obtain
$\begin{array}{c}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le {\left(\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}{\left|K\left(t,s\right)\right|}^{p}dsdt\right)}^{\frac{1}{p}}{\left(\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|}^{q}dsdt\right)}^{\frac{1}{q}}.\end{array}$
(2.10)
Since ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ is convex on the co-ordinates on Δ, we have
(2.11)
Also, we notice that
$\begin{array}{c}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}{\left|K\left(t,s\right)\right|}^{p}dsdt=\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}{t}^{p}{s}^{p}dsdt+\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}{t}^{p}{\left(1-s\right)}^{p}dsdt\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}+\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}{s}^{p}{\left(1-t\right)}^{p}dsdt+\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}{\left(1-t\right)}^{p}{\left(1-s\right)}^{p}dsdt\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}=\frac{4}{{\left(p+1\right)}^{2}}{\left(\frac{1}{2}\right)}^{2\left(p+1\right)}.\end{array}$
(2.12)
Using (2.11) and (2.12) in (2.10), we obtain
$\begin{array}{c}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le \frac{1}{4{\left(p+1\right)}^{\frac{2}{p}}}{\left[\frac{{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)\right|}^{q}}{4}\right]}^{\frac{1}{q}}.\end{array}$

Utilizing the last inequality in (2.9) gives us (2.8). This completes the proof of the theorem.

Now we state our next result in:

Theorem 4. Let f: Δ 2 be a partial differentiable mapping on Δ: = [a, b] × [c, d] with a < b, c < d. If ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ is convex on the co-ordinates on Δ and q ≥ 1, then the following inequality holds:
$\begin{array}{c}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{c}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\\ \le \frac{\left(b-a\right)\left(d-c\right)}{16}{\left[\frac{{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(a,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(a,d\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(b,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}\left(b,d\right)\right|}^{q}}{4}\right]}^{\frac{1}{q}},\end{array}$
(2.13)

where A is as given in Theorem 2.

Proof. By using Lemma 1, we have that the following inequality:
$\begin{array}{c}\left|\frac{1}{\left(b-a\right)\left(d-c\right)}\underset{a}{\overset{b}{\int }}\underset{a}{\overset{d}{\int }}f\left(x,y\right)dydx+f\left(\frac{a+b}{2},\frac{c+d}{2}\right)-A\right|\\ \le \left(b-a\right)\left(d-c\right)\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt.\end{array}$
(2.14)
By the power mean inequality, we have
$\begin{array}{c}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le {\left(\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|dsdt\right)}^{1-\frac{1}{q}}\\ ×{\left(\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|}^{q}dsdt\right)}^{\frac{1}{q}}\\ ={\left(\frac{1}{16}\right)}^{1-\frac{1}{q}}{\left(\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|}^{q}dsdt\right)}^{\frac{1}{q}}.\end{array}$
(2.15)
Using the fact that ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ is convex on the co-ordinates on Δ, we get
$\begin{array}{c}{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|}^{q}\\ =ts{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)\right|}^{q}+t\left(1-s\right){\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)\right|}^{q}+s\left(1-t\right){\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)\right|}^{q}\\ +\left(1-t\right)\left(1-s\right){\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)\right|}^{q}\end{array}$
and hence, we obtain
$\begin{array}{l}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}|K\left(t,s\right)|{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)|}^{q}dsdt\\ \le \underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}|K\left(t,s\right)|\left[ts{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)|}^{q}+t\left(1-s\right){|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)|}^{q}\\ +s\left(1-t\right){|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)|}^{q}+\left(1-t\right)\left(1-s\right){|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)|}^{q}\right]dsdt\\ =\frac{1}{64}\left[{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)|}^{q}+{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)|}^{q}+{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)|}^{q}+{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)|}^{q}\right].\end{array}$
Therefore (2.15) becomes
$\begin{array}{c}\underset{0}{\overset{1}{\int }}\underset{0}{\overset{1}{\int }}\left|K\left(t,s\right)\right|\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le \frac{1}{16}{\left[\frac{{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(a,d\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,c\right)\right|}^{q}+{\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(b,d\right)\right|}^{q}}{4}\right]}^{\frac{1}{q}}\end{array}$
(2.16)

Substitution of (2.16) in (2.14), we obtain (2.13). Hence the proof is complete.

Remark 1. Since 2 p > p + 1 if p > 1 and accordingly
$\frac{1}{4}<\frac{1}{2\left(p+1\right)\frac{1}{p}}$
and hence we have that the following inequality:
$\frac{1}{16}<\frac{1}{4}\cdot \frac{1}{4}<\frac{1}{2\left(p+1\right)\frac{1}{p}}\cdot \frac{1}{2\left(p+1\right)\frac{1}{p}}=\frac{1}{4\left(p+1\right)\frac{2}{p}},$

and as a consequence we get an improvement of the constant in Theorem 3.

Following theorem is about concave functions on the co-ordinates on Δ:

Theorem 5. Let f: Δ 2 be a partial differentiable mapping on Δ: = [a, b] × [c, d] with a < b, c < d. If ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ is concave on the co-ordinates on Δ and q ≥ 1, then we have the inequality:
(2.17)

where A is as defined in Theorem 2.

Proof. By the concavity of ${\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|}^{q}$ on the co-ordinates on Δ and power mean inequality, we note that the following inequality holds:
$\begin{array}{c}{|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\lambda x+\left(1-\lambda \left(y,v\right)|}^{q}\ge \lambda {|\frac{{\partial }^{2}}{\partial s\partial t}f\left(x,v\right)|}^{q}+\left(1-\lambda \right){|\frac{{\partial }^{2}}{\partial s\partial t}f\left(y,v\right)|}^{q}\\ \ge {\left(\lambda |\frac{{\partial }^{2}}{\partial s\partial t}f\left(x,v\right)|+\left(1-\lambda \right)|\frac{{\partial }^{2}}{\partial s\partial t}f\left(y,v\right)|\right)}^{q},\end{array}$

for all x, y [a, b], λ [0, 1] and for fixed v [c, d].

Hence,
$\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\lambda x+\left(1-\lambda \right)y,v\right)\right|\ge \lambda \left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(x,v\right)\right|+\left(1-\lambda \right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(y,v\right)\right|,$

for all x, y [a, b], λ [0, 1] and for fixed v [c, d].

Similarly, we can show that
$\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(u,\lambda z+\left(1-\lambda \right)w\right)\right|\ge \lambda \left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(u,z\right)\right|+\left(1-\lambda \right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(u,w\right)\right|,$

for all z, w [c, d], λ [0, 1] and for fixed u [a, d], thus $\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|$ is concave on the co-ordinates on Δ.

It is clear from Lemma 1 that
(2.18)
Since $\left|\frac{{\partial }^{2}f}{\partial s\partial t}\right|$ is concave on the co-ordinates, we have, by Jensen's inequality for integrals, that:
$\begin{array}{c}\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}st\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ =\underset{0}{\overset{\frac{1}{2}}{\int }}t\left[\underset{0}{\overset{\frac{1}{2}}{\int }}s\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|ds\right]dt\\ \le \underset{0}{\overset{\frac{1}{2}}{\int }}r\left(\underset{0}{\overset{\frac{1}{2}}{\int }}sds\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,\frac{\underset{0}{\overset{\frac{1}{2}}{\int }}s\left(sc+\left(1-s\right)d\right)ds}{\underset{0}{\overset{\frac{1}{2}}{\int }}sds}\right)\right|dt\\ =\frac{1}{8}\underset{0}{\overset{\frac{1}{2}}{\int }}t\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,\frac{c+2d}{3}\right)\right|dt\\ \le \frac{1}{8}\left(\underset{0}{\overset{\frac{1}{2}}{\int }}tdt\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\frac{\underset{0}{\overset{\frac{1}{2}}{\int }}t\left(ta+\left(1-t\right)b\right)dt}{\underset{0}{\overset{\frac{1}{2}}{\int }}tdt},\frac{c+2d}{3}\right)\right|\\ =\frac{1}{64}\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\frac{a+2b}{3},\frac{c+2d}{3}\right)\right|.\end{array}$
(2.19)
In a similar way, we also have that
$\begin{array}{c}\underset{0}{\overset{\frac{1}{2}}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}t\left(1-s\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le \frac{1}{64}\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\frac{a+2b}{3},\frac{2c+d}{3}\right)\right|,\end{array}$
(2.20)
$\begin{array}{c}\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{0}{\overset{\frac{1}{2}}{\int }}s\left(1-t\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le \frac{1}{64}\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\frac{2a+b}{3},\frac{c+2d}{3}\right)\right|\end{array}$
(2.21)
and
$\begin{array}{c}\underset{\frac{1}{2}}{\overset{1}{\int }}\underset{\frac{1}{2}}{\overset{1}{\int }}\left(1-t\right)\left(1-s\right)\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(ta+\left(1-t\right)b,sc+\left(1-s\right)d\right)\right|dsdt\\ \le \frac{1}{64}\left|\frac{{\partial }^{2}}{\partial s\partial t}f\left(\frac{2a+b}{3},\frac{c+2d}{3}\right)\right|.\end{array}$
(2.22)

By making use of (2.19)-(2.22) in (2.18), we get the desired result. This completes the proof.

## Declarations

### Acknowledgements

This article is in final form and no version of it will be submitted for publication elsewhere.

## Authors’ Affiliations

(1)
College of Science, Department of Mathematics, University of Hail
(2)
School of Engineering & Science, Victoria University

## References

1. Pečarić JE, Proschan F, Tong YL: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York; 1991.Google Scholar
2. Alomari M, Darus M, Dragomir SS: Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex. RGMIA Res Rep Collect 2009., 12(suppl. 14):Google Scholar
3. Dragomir SS, Agarwal RP: Two inequalities for differentiable mappings and applications to special means of real numbers and to Trapezoidal formula. Appl Math Lett 1998, 11(5):91–95. 10.1016/S0893-9659(98)00086-X
4. Kirmaci US: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl Math Comput 2004, 147: 137–146. 10.1016/S0096-3003(02)00657-4
5. Pearce CME, Pečarić JE: Inequalities for differentiable mappings with applications to special means and quadrature formula. Appl Math Lett 2000, 13: 51–55.
6. Dragomir SS: On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J Math 2001, 4: 775–788.Google Scholar
7. Dragomir SS, Pearce CEM: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University; 2000.http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html Online:Google Scholar
8. Latif MA, Alomari M: Hadamard-type inequalities for product two convex functions on the co-ordinetes. Int Math Forum 2009, 4(47):2327–2338.
9. Alomari M, Darus M: Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities. Int J Contemp Math Sci 2008, 3(32):1557–1567.
10. Alomari M, Darus M: On the Hadamard's inequality for log-convex functions on the coordinates. J Inequal Appl 2009., 13: (Article ID 283147)Google Scholar
11. Latif MA, Alomari M: On the Hadamard-type inequalities for h-convex functions on the co-ordinetes. Int J Math Anal 2009, 3(33):1645–1656.
12. Özdemir ME, Set E, Sarikaya MZ: New some Hadamard's type inequalities for coordinated m -convex and ( α, m )-convex functions. RGMIA Res Rep Collect 2010., 13: Supplement, (Article 4)Google Scholar
13. Sarikaya MZ, Set E, Özdemir ME, Dragomir SS: Some new Hadamard's type inequalities for co-ordinated convex functions. arXiv:1005.0700v1 [math.CA]Google Scholar

## Copyright

© Latif and Dragomir; licensee Springer. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.